Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(0)^(3)(x^(2)+4x+5)/(x+3)dx=

03x2+4x+5x+3dx= \int_{0}^{3} \frac{x^{2}+4 x+5}{x+3} d x=

Full solution

Q. 03x2+4x+5x+3dx= \int_{0}^{3} \frac{x^{2}+4 x+5}{x+3} d x=
  1. Simplify Integrand: Simplify the integrand by polynomial long division.\newlineWe divide x2+4x+5x^2 + 4x + 5 by x+3x + 3 to get a simpler expression to integrate.\newline(x2+4x+5)÷(x+3)=x1+(8x+3)(x^2 + 4x + 5) \div (x + 3) = x - 1 + \left(\frac{8}{x + 3}\right)
  2. Write Integral Expression: Write the integral in terms of the simplified expression.\newlineThe integral becomes:\newline03(x1+8x+3)dx\int_{0}^{3}(x - 1 + \frac{8}{x + 3}) \, dx
  3. Break Into Simpler Parts: Break the integral into simpler parts. (x1)dx+(8x+3)dx\int (x - 1) \, dx + \int \left(\frac{8}{x + 3}\right) dx from 00 to 33
  4. Integrate Each Part: Integrate each part separately.\newlineThe integral of xx is (1/2)x2(1/2)x^2, the integral of 1-1 is x-x, and the integral of 8/(x+3)8/(x + 3) is 8lnx+38\ln|x + 3|.\newlineSo, the antiderivative is (1/2)x2x+8lnx+3+C(1/2)x^2 - x + 8\ln|x + 3| + C.
  5. Evaluate Antiderivative: Evaluate the antiderivative from 00 to 33.\newlinePlug in the upper limit:\newline(1/2)(3)2(3)+8ln3+3[(1/2)(0)2(0)+8ln0+3](1/2)(3)^2 - (3) + 8\ln|3 + 3| - [ (1/2)(0)^2 - (0) + 8\ln|0 + 3| ]\newline=(1/2)(9)3+8ln(6)[00+8ln(3)]= (1/2)(9) - 3 + 8\ln(6) - [ 0 - 0 + 8\ln(3) ]\newline=4.53+8ln(6)8ln(3)= 4.5 - 3 + 8\ln(6) - 8\ln(3)
  6. Simplify Result: Simplify the result using properties of logarithms.\newline8ln(6)8ln(3)8\ln(6) - 8\ln(3) can be simplified using the property ln(a)ln(b)=ln(ab)\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right).\newlineSo, 8ln(6)8ln(3)=8ln(63)=8ln(2)8\ln(6) - 8\ln(3) = 8\ln\left(\frac{6}{3}\right) = 8\ln(2).\newlineThe final result is:\newline4.53+8ln(2)4.5 - 3 + 8\ln(2)\newline=1.5+8ln(2)= 1.5 + 8\ln(2)

More problems from Evaluate definite integrals using the power rule