Trig Substitution: We are given the integral to evaluate: ∫02x2+4dxTo solve this integral, we can use a trigonometric substitution. Let's choose x=2tan(θ), where θ is the new variable of integration. This substitution is chosen because it will simplify the square root in the denominator.
Find dx in terms of dθ: First, we need to find the differential dx in terms of dθ. Since x=2tan(θ), we take the derivative with respect to θ to get:dθdx=2sec2(θ)Therefore, dx=2sec2(θ)dθ
Substitute x=2tan(θ): Now we substitute x=2tan(θ) into the integral and change the limits of integration accordingly. When x=0, tan(θ)=0, so θ=0. When x=2, tan(θ)=1, so θ=4π. The integral becomes: ∫04π(2tan(θ))2+42sec2(θ)dθ
Simplify the integral: Simplify the integral by substituting x=2tan(θ) and dx=2sec2(θ)dθ:∫04π4tan2(θ)+42sec2(θ)dθ=∫04π4(tan2(θ)+1)2sec2(θ)dθ=∫04π2tan2(θ)+12sec2(θ)dθ
Use trigonometric identities: We know that sec2(θ)−tan2(θ)=1, so tan2(θ)+1=sec(θ). The integral simplifies to:\int_{0}^{\frac{\pi}{4}}\frac{2\sec^2(\theta)d\theta}{2\sec(\theta)}= \int_{0}^{\frac{\pi}{4}}\sec(\theta)d\theta
Evaluate the integral: The integral of sec(θ) is ln∣sec(θ)+tan(θ)∣. So we evaluate the integral from 0 to 4π:∫04πsec(θ)dθ=ln∣sec(4π)+tan(4π)∣−ln∣sec(0)+tan(0)∣
Plug in values: Now we plug in the values for θ=4π and θ=0: ln∣sec(4π)+tan(4π)∣−ln∣sec(0)+tan(0)∣=ln∣2+1∣−ln∣1+0∣=ln(2+1)−ln(1)=ln(2+1)
More problems from Evaluate definite integrals using the chain rule