Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Evaluate the integral: int_(0)^(2)(dx)/(sqrt(x^(2)+4))

Evaluate the integral: 02dxx2+4 \int_{0}^{2} \frac{d x}{\sqrt{x^{2}+4}}

Full solution

Q. Evaluate the integral: 02dxx2+4 \int_{0}^{2} \frac{d x}{\sqrt{x^{2}+4}}
  1. Trig Substitution: We are given the integral to evaluate: \newline02dxx2+4\int_{0}^{2}\frac{dx}{\sqrt{x^{2}+4}}\newlineTo solve this integral, we can use a trigonometric substitution. Let's choose x=2tan(θ)x = 2\tan(\theta), where θ\theta is the new variable of integration. This substitution is chosen because it will simplify the square root in the denominator.
  2. Find dxdx in terms of dθd\theta: First, we need to find the differential dxdx in terms of dθd\theta. Since x=2tan(θ)x = 2\tan(\theta), we take the derivative with respect to θ\theta to get:\newlinedxdθ=2sec2(θ)\frac{dx}{d\theta} = 2\sec^2(\theta)\newlineTherefore, dx=2sec2(θ)dθdx = 2\sec^2(\theta)d\theta
  3. Substitute x=2tan(θ)x = 2\tan(\theta): Now we substitute x=2tan(θ)x = 2\tan(\theta) into the integral and change the limits of integration accordingly. When x=0x = 0, tan(θ)=0\tan(\theta) = 0, so θ=0\theta = 0. When x=2x = 2, tan(θ)=1\tan(\theta) = 1, so θ=π4\theta = \frac{\pi}{4}. The integral becomes: 0π42sec2(θ)dθ(2tan(θ))2+4\int_{0}^{\frac{\pi}{4}}\frac{2\sec^2(\theta)d\theta}{\sqrt{(2\tan(\theta))^2+4}}
  4. Simplify the integral: Simplify the integral by substituting x=2tan(θ)x = 2\tan(\theta) and dx=2sec2(θ)dθdx = 2\sec^2(\theta)d\theta:0π42sec2(θ)dθ4tan2(θ)+4\int_{0}^{\frac{\pi}{4}}\frac{2\sec^2(\theta)d\theta}{\sqrt{4\tan^2(\theta)+4}}=0π42sec2(θ)dθ4(tan2(θ)+1)\int_{0}^{\frac{\pi}{4}}\frac{2\sec^2(\theta)d\theta}{\sqrt{4(\tan^2(\theta)+1)}}=0π42sec2(θ)dθ2tan2(θ)+1\int_{0}^{\frac{\pi}{4}}\frac{2\sec^2(\theta)d\theta}{2\sqrt{\tan^2(\theta)+1}}
  5. Use trigonometric identities: We know that sec2(θ)tan2(θ)=1\sec^2(\theta) - \tan^2(\theta) = 1, so tan2(θ)+1=sec(θ)\sqrt{\tan^2(\theta) + 1} = \sec(\theta). The integral simplifies to:\newline\int_{00}^{\frac{\pi}{44}}\frac{22\sec^22(\theta)d\theta}{22\sec(\theta)}\newline= \int_{00}^{\frac{\pi}{44}}\sec(\theta)d\theta
  6. Evaluate the integral: The integral of sec(θ)\sec(\theta) is lnsec(θ)+tan(θ)\ln|\sec(\theta) + \tan(\theta)|. So we evaluate the integral from 00 to π4\frac{\pi}{4}:0π4sec(θ)dθ=lnsec(π4)+tan(π4)lnsec(0)+tan(0)\int_{0}^{\frac{\pi}{4}}\sec(\theta)d\theta = \ln|\sec(\frac{\pi}{4}) + \tan(\frac{\pi}{4})| - \ln|\sec(0) + \tan(0)|
  7. Plug in values: Now we plug in the values for θ=π4\theta = \frac{\pi}{4} and θ=0\theta = 0: \newlinelnsec(π4)+tan(π4)lnsec(0)+tan(0)\ln|\sec(\frac{\pi}{4}) + \tan(\frac{\pi}{4})| - \ln|\sec(0) + \tan(0)|\newline=ln2+1ln1+0= \ln|\sqrt{2} + 1| - \ln|1 + 0|\newline=ln(2+1)ln(1)= \ln(\sqrt{2} + 1) - \ln(1)\newline=ln(2+1)= \ln(\sqrt{2} + 1)

More problems from Evaluate definite integrals using the chain rule