Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(0)^(1)(a+(b-a)t)^(k)dt,k inN.

01(a+(ba)t)kdt,kN \int_{0}^{1}(a+(b-a) t)^{k} d t, k \in \mathbb{N} .

Full solution

Q. 01(a+(ba)t)kdt,kN \int_{0}^{1}(a+(b-a) t)^{k} d t, k \in \mathbb{N} .
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function (a+(ba)t)k(a + (b - a)t)^k with respect to tt from 00 to 11, where kk is a natural number.
  2. Apply Substitution Method: Apply the substitution method to simplify the integral. Let u=a+(ba)tu = a + (b - a)t, which implies that du=(ba)dtdu = (b - a)dt. We also need to change the limits of integration according to the substitution. When t=0t = 0, u=au = a. When t=1t = 1, u=bu = b.
  3. Express dtdt in terms of dudu: Express dtdt in terms of dudu and adjust the integral accordingly.\newlineFrom du=(ba)dtdu = (b - a)dt, we get dt=du(ba)dt = \frac{du}{(b - a)}. Now we can rewrite the integral in terms of uu:\newline01(a+(ba)t)kdt=abuk1(ba)du\int_{0}^{1}(a + (b - a)t)^k dt = \int_{a}^{b}u^k \cdot \frac{1}{(b - a)} du.
  4. Evaluate Integral: Evaluate the integral with the new variable and limits.\newlineThe integral becomes (1/(ba))abukdu(1/(b - a)) \cdot \int_a^b u^k \, du. The antiderivative of uku^k is u(k+1)/(k+1)u^{(k+1)}/(k+1), so we have:\newline(1/(ba))[u(k+1)/(k+1)](1/(b - a)) \cdot [u^{(k+1)}/(k+1)] from aa to bb.
  5. Substitute Limits: Substitute the limits into the antiderivative and calculate the difference.\newlineSubstitute u=bu = b and u=au = a into the antiderivative and calculate the difference:\newline1(ba)[b(k+1)(k+1)a(k+1)(k+1)]\frac{1}{(b - a)} \cdot \left[\frac{b^{(k+1)}}{(k+1)} - \frac{a^{(k+1)}}{(k+1)}\right].
  6. Simplify Final Answer: Simplify the expression to get the final answer.\newlineThe final answer is:\newline1(ba)1(k+1)[b(k+1)a(k+1)]\frac{1}{(b - a)} \cdot \frac{1}{(k+1)} \cdot [b^{(k+1)} - a^{(k+1)}].

More problems from Evaluate definite integrals using the chain rule