Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

i) 
lim_(x rarr oo)(x^(2))/(x^(3)-5)

i) limxx2x35 \lim _{x \rightarrow \infty} \frac{x^{2}}{x^{3}-5}

Full solution

Q. i) limxx2x35 \lim _{x \rightarrow \infty} \frac{x^{2}}{x^{3}-5}
  1. Divide by x3x^3: To find the limit of the function as xx approaches infinity, we can divide the numerator and the denominator by the highest power of xx in the denominator, which is x3x^3.
  2. Simplify expression: Divide both the numerator and the denominator by x3x^3: limx(x2x3)/(x3x35x3)\lim_{x \to \infty} \left(\frac{x^2}{x^3}\right) / \left(\frac{x^3}{x^3} - \frac{5}{x^3}\right)
  3. Approach infinity: Simplify the expression: limx1/x15/x3\lim_{x \to \infty} \frac{1/x}{1 - 5/x^3}
  4. Final limit is 00: As xx approaches infinity, 1x\frac{1}{x} and 5x3\frac{5}{x^3} both approach 00:limx1x15x3=010\lim_{x \to \infty} \frac{\frac{1}{x}}{1 - \frac{5}{x^3}} = \frac{0}{1 - 0}
  5. Final limit is 00: As xx approaches infinity, 1x\frac{1}{x} and 5x3\frac{5}{x^3} both approach 00: limx(1x)/(15x3)=010\lim_{x \to \infty} \left(\frac{1}{x}\right) / \left(1 - \frac{5}{x^3}\right) = \frac{0}{1 - 0}The limit of the function as xx approaches infinity is 00: limx(x2x35)=0\lim_{x \to \infty} \left(\frac{x^2}{x^3 - 5}\right) = 0

More problems from Evaluate definite integrals using the chain rule