Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How many solutions does the system of equations below have?\newline2x+3y+2z=192x + 3y + 2z = -19\newline2x2y+2z=5-2x - 2y + 2z = 5\newlinex2y3z=15-x - 2y - 3z = -15\newlineChoices:\newline(A)no solution\newline(B)one solution\newline(C)infinitely many solutions

Full solution

Q. How many solutions does the system of equations below have?\newline2x+3y+2z=192x + 3y + 2z = -19\newline2x2y+2z=5-2x - 2y + 2z = 5\newlinex2y3z=15-x - 2y - 3z = -15\newlineChoices:\newline(A)no solution\newline(B)one solution\newline(C)infinitely many solutions
  1. Combine Equations to Eliminate xx: Combine the first and second equations to eliminate xx.$2x+3y+2z\$2x + 3y + 2z + (2-2x - 22y + 22z) = 19-19 + 55\)3y2y+2z+2z=143y - 2y + 2z + 2z = -14y+4z=14y + 4z = -14
  2. Combine Equations to Eliminate xx: Combine the second and third equations to eliminate xx.\(\newline\)(2x2y+2z-2x - 2y + 2z) - (x2y3z-x - 2y - 3z) = 55 - (15-15)\(\newline\)2-2x + x - 22y + 22y + 22z + 33z = 5+155 + 15\(\newline\)-x + 55z = xx00\(\newline\)xx22
  3. Substitute xx into First Equation: Substitute x=205zx = 20 - 5z into the first equation.\newline2(205z)+3y+2z=192(20 - 5z) + 3y + 2z = -19\newline4010z+3y+2z=1940 - 10z + 3y + 2z = -19\newline3y8z=593y - 8z = -59
  4. Align y Terms: Now we have two equations with two variables:\newliney+4z=14y + 4z = -14\newline3y8z=593y - 8z = -59\newlineMultiply the first equation by 33 to align y terms.\newline3(y+4z)=3(14)3(y + 4z) = 3(-14)\newline3y+12z=423y + 12z = -42
  5. Eliminate y: Subtract the new equation from the second equation to eliminate y.\newline(3y8z)(3y+12z)=59(42)(3y - 8z) - (3y + 12z) = -59 - (-42)\newline8z12z=59+42-8z - 12z = -59 + 42\newline20z=17-20z = -17\newlinez=17/20z = -17 / -20\newlinez=17/20z = 17/20
  6. Find yy: Substitute z=1720z = \frac{17}{20} into y+4z=14y + 4z = -14 to find yy.
    y+4(1720)=14y + 4\left(\frac{17}{20}\right) = -14
    y+6820=14y + \frac{68}{20} = -14
    y+175=14y + \frac{17}{5} = -14
    y=14175y = -14 - \frac{17}{5}
    y=705175y = -\frac{70}{5} - \frac{17}{5}
    y=875y = -\frac{87}{5}
  7. Find xx: Substitute z=1720z = \frac{17}{20} and y=875y = -\frac{87}{5} into x=205zx = 20 - 5z to find xx.
    x=205(1720)x = 20 - 5\left(\frac{17}{20}\right)
    x=20174x = 20 - \frac{17}{4}
    x=804174x = \frac{80}{4} - \frac{17}{4}
    x=634x = \frac{63}{4}

More problems from Determine the number of solutions to a system of equations in three variables