Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

H(x)=-x-5

h(x)=H^(')(x)

int_(-3)^(6)h(x)dx=

H(x)=x5 H(x)=-x-5 \newlineh(x)=H(x) h(x)=H^{\prime}(x) \newline36h(x)dx= \int_{-3}^{6} h(x) d x=

Full solution

Q. H(x)=x5 H(x)=-x-5 \newlineh(x)=H(x) h(x)=H^{\prime}(x) \newline36h(x)dx= \int_{-3}^{6} h(x) d x=
  1. Integrate h(x)h(x): Now we integrate h(x)h(x) from 3-3 to 66.36h(x)dx=36(1)dx\int_{-3}^{6} h(x) \, dx = \int_{-3}^{6} (-1) \, dxThis is a simple integral, the antiderivative of 1-1 is x-x.
  2. Evaluate antiderivative: We evaluate the antiderivative at the bounds 66 and 3-3.(6)((3))=63=3-(-6) - (-(-3)) = 6 - 3 = 3
  3. Correct evaluation: But wait, there's a mistake in the previous step. The correct evaluation should be:\newline(6)((3))=6+3=9-(-6) - (-(-3)) = 6 + 3 = 9

More problems from Evaluate definite integrals using the power rule