Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

G(x)=sqrt(3x)

g(x)=G^(')(x)

int_(3)^(12)g(x)dx=

G(x)=3x G(x)=\sqrt{3 x} \newlineg(x)=G(x) g(x)=G^{\prime}(x) \newline312g(x)dx= \int_{3}^{12} g(x) d x=

Full solution

Q. G(x)=3x G(x)=\sqrt{3 x} \newlineg(x)=G(x) g(x)=G^{\prime}(x) \newline312g(x)dx= \int_{3}^{12} g(x) d x=
  1. Find Derivative of G(x)G(x): First, find the derivative of G(x)=3xG(x) = \sqrt{3x} to get g(x)g(x).g(x)=G(x)=(12)(3x)12×3=(32)(3x)12g(x) = G'(x) = \left(\frac{1}{2}\right)(3x)^{-\frac{1}{2}} \times 3 = \left(\frac{3}{2}\right)(3x)^{-\frac{1}{2}}
  2. Simplify g(x)g(x): Now, simplify g(x)g(x).g(x) = \left(\frac{\(3\)}{\(2\)}\right)\left(\frac{\(1\)}{\sqrt{\(3\)x}}\right) = \left(\frac{\(3\)}{\(2\)}\right)\left(\frac{\(1\)}{\sqrt{\(3\)}\sqrt{x}}\right) = \left(\frac{\(3\)}{\(2\)}\right)\left(\frac{\(1\)}{\sqrt{\(3\)}x^{\frac{\(1\)}{\(2\)}}}\right) = \frac{\(3\)}{\(2\)\sqrt{\(3\)}\sqrt{x}}
  3. Set Up Integral: Next, set up the integral of \(g(x) from 33 to 1212.312g(x)dx=312(323x)dx\int_{3}^{12}g(x)\,dx = \int_{3}^{12}\left(\frac{3}{2\sqrt{3}\sqrt{x}}\right)dx
  4. Integrate g(x)g(x): Integrate g(x)g(x) with respect to xx.312(323x)dx=(323)312x12dx\int_{3}^{12}\left(\frac{3}{2\sqrt{3}\sqrt{x}}\right)dx = \left(\frac{3}{2\sqrt{3}}\right) \cdot \int_{3}^{12}x^{-\frac{1}{2}}dx
  5. Find Antiderivative: Find the antiderivative of x12x^{-\frac{1}{2}}. \newlinex12dx=2x12+C\int x^{-\frac{1}{2}}\,dx = 2x^{\frac{1}{2}} + C
  6. Apply Antiderivative: Now, apply the antiderivative to the integral with the limits from 33 to 1212. \newline323\frac{3}{2\sqrt{3}} * [2x12][2x^{\frac{1}{2}}] from 33 to 1212 = 323\frac{3}{2\sqrt{3}} * [212122312][2\cdot12^{\frac{1}{2}} - 2\cdot3^{\frac{1}{2}}]
  7. Simplify Expression: Simplify the expression.\newline(323)×[21223]=(323)×[24×323]=(323)×[2×2323](\frac{3}{2\sqrt{3}}) \times [2\sqrt{12} - 2\sqrt{3}] = (\frac{3}{2\sqrt{3}}) \times [2\sqrt{4\times3} - 2\sqrt{3}] = (\frac{3}{2\sqrt{3}}) \times [2\times2\sqrt{3} - 2\sqrt{3}]
  8. Further Simplify: Further simplify the expression.\newline(323)×[4323]=(323)×[23]=32×2=3(\frac{3}{2\sqrt{3}}) \times [4\sqrt{3} - 2\sqrt{3}] = (\frac{3}{2\sqrt{3}}) \times [2\sqrt{3}] = \frac{3}{2} \times 2 = 3

More problems from Evaluate definite integrals using the power rule