Set Up Integral: Next, set up the integral of \(g(x) from 3 to 12.∫312g(x)dx=∫312(23x3)dx
Integrate g(x): Integrate g(x) with respect to x.∫312(23x3)dx=(233)⋅∫312x−21dx
Find Antiderivative: Find the antiderivative of x−21. ∫x−21dx=2x21+C
Apply Antiderivative: Now, apply the antiderivative to the integral with the limits from 3 to 12. 233 * [2x21] from 3 to 12 = 233 * [2⋅1221−2⋅321]
Simplify Expression: Simplify the expression.(233)×[212−23]=(233)×[24×3−23]=(233)×[2×23−23]
Further Simplify: Further simplify the expression.(233)×[43−23]=(233)×[23]=23×2=3
More problems from Evaluate definite integrals using the power rule