Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(-pi)^(x)sin(t)dt

g^(')(pi)=

g(x)=πxsin(t)dt g(x)=\int_{-\pi}^{x} \sin (t) d t \newlineg(π)= g^{\prime}(\pi)=

Full solution

Q. g(x)=πxsin(t)dt g(x)=\int_{-\pi}^{x} \sin (t) d t \newlineg(π)= g^{\prime}(\pi)=
  1. Apply Fundamental Theorem of Calculus: Use the Fundamental Theorem of Calculus which states that if g(x)=axf(t)dtg(x) = \int_{a}^{x} f(t)\,dt, then g(x)=f(x)g'(x) = f(x).
  2. Calculate g(x)g'(x): Since g(x)=πxsin(t)dtg(x) = \int_{-\pi}^{x} \sin(t)\,dt, then g(x)=sin(x)g'(x) = \sin(x).
  3. Evaluate g(π):</b>Evaluate$g(x)g'(\pi):</b> Evaluate \$g'(x) at x=πx = \pi. So, g(π)=sin(π)g'(\pi) = \sin(\pi).
  4. Final Result: Since sin(π)=0\sin(\pi) = 0, g(π)=0g'(\pi) = 0.

More problems from Evaluate definite integrals using the power rule