Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(2)^(x)(1)/(1+t^(3))dt

g^(')(2)=
Choose 1 answer:
(A) 
(-7)/(18)
(B) 0
(C) 
(1)/(9)
() 
(1)/(3)
(E) None of these

g(x)=2x11+t3dt g(x)=\int_{2}^{x} \frac{1}{1+t^{3}} d t \newlineg(2)= g^{\prime}(2)= \newlineChoose 11 answer:\newline(A) 718 \frac{-7}{18} \newline(B) 00\newline(C) 19 \frac{1}{9} \newline(D) 13 \frac{1}{3} \newline(E) None of these

Full solution

Q. g(x)=2x11+t3dt g(x)=\int_{2}^{x} \frac{1}{1+t^{3}} d t \newlineg(2)= g^{\prime}(2)= \newlineChoose 11 answer:\newline(A) 718 \frac{-7}{18} \newline(B) 00\newline(C) 19 \frac{1}{9} \newline(D) 13 \frac{1}{3} \newline(E) None of these
  1. Define g(x)g(x): Define the function g(x)g(x) and find its derivative using the Fundamental Theorem of Calculus.
  2. Find derivative using Fundamental Theorem: Evaluate g(x)g'(x) at x=2x = 2.

More problems from Evaluate definite integrals using the chain rule