Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(-12)^(x)(4t-7)dt

g^(')(5)=

g(x)=12x(4t7)dt g(x)=\int_{-12}^{x}(4 t-7) d t \newlineg(5)= g^{\prime}(5)=

Full solution

Q. g(x)=12x(4t7)dt g(x)=\int_{-12}^{x}(4 t-7) d t \newlineg(5)= g^{\prime}(5)=
  1. Derivative Rule: We know that the derivative of an integral with respect to its upper limit is the integrand evaluated at that limit.\newlineSo, g(x)=4x7g'(x) = 4x - 7.
  2. Evaluate at x=5x=5: Now we just plug in x=5x=5 into g(x)g'(x) to find g(5)g'(5).\newlineg(5)=4(5)7g'(5) = 4(5) - 7.
  3. Calculate g(5)g'(5): Calculate the value of g(5)g'(5).g(5)=207g'(5) = 20 - 7.
  4. Simplify Result: Simplify the result to get the final answer. g(5)=13g'(5) = 13.

More problems from Evaluate definite integrals using the power rule