Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(1)^(x)sqrt(2t+7)dt

g^(')(9)=

g(x)=1x2t+7dt g(x)=\int_{1}^{x} \sqrt{2 t+7} d t \newlineg(9)= g^{\prime}(9)=

Full solution

Q. g(x)=1x2t+7dt g(x)=\int_{1}^{x} \sqrt{2 t+7} d t \newlineg(9)= g^{\prime}(9)=
  1. Apply Fundamental Theorem of Calculus: First, we need to use the Fundamental Theorem of Calculus which says that if g(x)g(x) is the integral from aa to xx of f(t)f(t)dt, then g(x)g'(x) is f(x)f(x).
  2. Calculate g(x)g'(x): So, g(x)=2x+7g'(x) = \sqrt{2x+7}.
  3. Find g(9)g'(9): Now we just plug in x=9x=9 into g(x)g'(x) to find g(9)g'(9).
  4. Evaluate g(9)g'(9): g(9)=29+7=18+7=25g'(9) = \sqrt{2\cdot 9 + 7} = \sqrt{18 + 7} = \sqrt{25}.
  5. Final Result: And we know that 25\sqrt{25} is 55.

More problems from Evaluate definite integrals using the chain rule