Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(1)^(x)sqrt(19-t)dt

g^(')(3)=

g(x)=1x19tdt g(x)=\int_{1}^{x} \sqrt{19-t} d t \newlineg(3)= g^{\prime}(3)=

Full solution

Q. g(x)=1x19tdt g(x)=\int_{1}^{x} \sqrt{19-t} d t \newlineg(3)= g^{\prime}(3)=
  1. Apply Fundamental Theorem of Calculus: Use the Fundamental Theorem of Calculus which states that if g(x)=axf(t)dtg(x) = \int_{a}^{x}f(t)\,dt, then g(x)=f(x)g'(x) = f(x).
  2. Determine f(t)f(t): Here, f(t)=19tf(t) = \sqrt{19-t}. So, g(x)=19xg'(x) = \sqrt{19-x}.
  3. Find g(x)g'(x): Evaluate g(3)=193g'(3) = \sqrt{19-3}.
  4. Substitute x=3x=3: Calculate g(3)=16g'(3) = \sqrt{16}.
  5. Simplify the Result: Simplify 16\sqrt{16} to get 44.

More problems from Evaluate definite integrals using the chain rule