Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(-1)^(x)(8-t)dt

g^(')(1)=

g(x)=1x(8t)dt g(x)=\int_{-1}^{x}(8-t) d t \newlineg(1)= g^{\prime}(1)=

Full solution

Q. g(x)=1x(8t)dt g(x)=\int_{-1}^{x}(8-t) d t \newlineg(1)= g^{\prime}(1)=
  1. Find derivative of g(x)g(x): First, let's find the derivative of g(x)g(x) using the Fundamental Theorem of Calculus.\newlineg(x)=ddx[1x(8t)dt]=8xg'(x) = \frac{d}{dx} \left[\int_{-1}^{x}(8-t)dt\right] = 8 - x
  2. Evaluate g(x)g'(x) at x=1x=1: Now, we need to evaluate g(x)g'(x) at x=1x=1.
    g(1)=81=7g'(1) = 8 - 1 = 7

More problems from Evaluate definite integrals using the chain rule