Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(0)^(x)(t^(2)-t)/(sqrtt)dt

g^(')(4)=

g(x)=0xt2ttdt g(x)=\int_{0}^{x} \frac{t^{2}-t}{\sqrt{t}} d t \newlineg(4)= g^{\prime}(4)=

Full solution

Q. g(x)=0xt2ttdt g(x)=\int_{0}^{x} \frac{t^{2}-t}{\sqrt{t}} d t \newlineg(4)= g^{\prime}(4)=
  1. Apply Fundamental Theorem: First, let's use the Fundamental Theorem of Calculus to find g(x)g'(x). g(x)=t2ttg'(x) = \frac{t^2 - t}{\sqrt{t}} evaluated at t=xt=x.
  2. Find g(x)g'(x): Now plug in x=4x=4 into the derivative.g(4)=4244g'(4) = \frac{4^2 - 4}{\sqrt{4}}.
  3. Evaluate at x=4x=4: Simplify the expression.g(4)=1642.g'(4) = \frac{16 - 4}{2}.
  4. Simplify the expression: Finish the calculation. g(4)=122g'(4) = \frac{12}{2}.
  5. Finish the calculation: Get the final answer.\newlineg(4)=6g'(4) = 6.

More problems from Evaluate definite integrals using the power rule