Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(0)^(x)sqrt(5+4tan t)dt

g^(')((pi)/(4))=

g(x)=0x5+4tantdt g(x)=\int_{0}^{x} \sqrt{5+4 \tan t} d t \newlineg(π4)= g^{\prime}\left(\frac{\pi}{4}\right)=

Full solution

Q. g(x)=0x5+4tantdt g(x)=\int_{0}^{x} \sqrt{5+4 \tan t} d t \newlineg(π4)= g^{\prime}\left(\frac{\pi}{4}\right)=
  1. Apply Fundamental Theorem of Calculus: Use the Fundamental Theorem of Calculus which states that if g(x)=axf(t)dtg(x) = \int_{a}^{x} f(t) \, dt, then g(x)=f(x)g'(x) = f(x).
  2. Evaluate integrand at x=π4x = \frac{\pi}{4}: Evaluate the integrand at x=π4x = \frac{\pi}{4}: f(π4)=5+4tan(π4)f\left(\frac{\pi}{4}\right) = \sqrt{5 + 4\tan\left(\frac{\pi}{4}\right)}.
  3. Substitute into integrand: Since tan(π4)=1\tan(\frac{\pi}{4}) = 1, substitute into the integrand: 5+4(1)=5+4\sqrt{5 + 4(1)} = \sqrt{5 + 4}.
  4. Simplify the expression: Simplify the expression: 9=3\sqrt{9} = 3.
  5. Final result: Therefore, g(π4)=3g'(\frac{\pi}{4}) = 3.

More problems from Evaluate definite integrals using the power rule