Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(0)^(x)sqrt(5+4cos t)dt

g^(')(pi)=

g(x)=0x5+4costdt g(x)=\int_{0}^{x} \sqrt{5+4 \cos t} d t \newlineg(π)= g^{\prime}(\pi)=

Full solution

Q. g(x)=0x5+4costdt g(x)=\int_{0}^{x} \sqrt{5+4 \cos t} d t \newlineg(π)= g^{\prime}(\pi)=
  1. Apply Fundamental Theorem: We need to use the Fundamental Theorem of Calculus to find g(x)g'(x). Since g(x)g(x) is an integral from 00 to xx, g(x)g'(x) is just the integrand evaluated at xx.
  2. Find g(x)g'(x): So, g(x)=5+4cos(x)g'(x) = \sqrt{5 + 4\cos(x)}.
  3. Evaluate at x=πx = \pi: Now we evaluate g(x)g'(x) at x=πx = \pi: g(π)=5+4cos(π)g'(\pi) = \sqrt{5 + 4\cos(\pi)}.
  4. Substitute cos(π)\cos(\pi): We know that cos(π)=1\cos(\pi) = -1, so plug that in: g(π)=5+4(1)g'(\pi) = \sqrt{5 + 4(-1)}.
  5. Simplify expression: Simplify the expression: g(π)=54.g'(\pi) = \sqrt{5 - 4}.
  6. Calculate value: Calculate the value: g(π)=1.g'(\pi) = \sqrt{1}.
  7. Final result: The square root of 11 is 11, so g(π)=1g'(\pi) = 1.

More problems from Evaluate definite integrals using the power rule