Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(0)^(x)sqrt(10 t+1)dt

g^(')(8)=

g(x)=0x10t+1dt g(x)=\int_{0}^{x} \sqrt{10 t+1} d t \newlineg(8)= g^{\prime}(8)=

Full solution

Q. g(x)=0x10t+1dt g(x)=\int_{0}^{x} \sqrt{10 t+1} d t \newlineg(8)= g^{\prime}(8)=
  1. Apply Fundamental Theorem of Calculus: Use the Fundamental Theorem of Calculus which states that if g(x)g(x) is defined as an integral from aa to xx of f(t)f(t)dt, then g(x)g'(x) is f(x)f(x).\newlineg(x)=10x+1g'(x) = \sqrt{10x+1}
  2. Evaluate at x=8x=8: Evaluate g(x)g'(x) at x=8x=8.g(8)=108+1g'(8) = \sqrt{10\cdot 8+1}
  3. Calculate inside square root: Calculate the value inside the square root. 10×8+1=80+1\sqrt{10 \times 8 + 1} = \sqrt{80 + 1}
  4. Simplify square root: Simplify the square root. 81=9\sqrt{81} = 9

More problems from Evaluate definite integrals using the chain rule