Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=int_(0)^(x)(5t^(2)-t)dt

g^(')(2)=

g(x)=0x(5t2t)dt g(x)=\int_{0}^{x}\left(5 t^{2}-t\right) d t \newlineg(2)= g^{\prime}(2)=

Full solution

Q. g(x)=0x(5t2t)dt g(x)=\int_{0}^{x}\left(5 t^{2}-t\right) d t \newlineg(2)= g^{\prime}(2)=
  1. Find Derivative of g(x)g(x): First, let's find the derivative of g(x)g(x) using the Fundamental Theorem of Calculus.\newlineg(x)=ddx0x(5t2t)dtg'(x) = \frac{d}{dx} \int_{0}^{x} (5t^2 - t) dt\newlineg(x)=5x2xg'(x) = 5x^2 - x
  2. Evaluate g(x)g'(x) at x=2x=2: Now, let's evaluate g(x)g'(x) at x=2x=2.
    g(2)=5(2)22g'(2) = 5(2)^2 - 2
    g(2)=5(4)2g'(2) = 5(4) - 2
    g(2)=202g'(2) = 20 - 2
    g(2)=18g'(2) = 18

More problems from Evaluate definite integrals using the power rule