Find g(x): First, we need to find g(x) by differentiating G(x).G(x)=cos(3x), so g(x)=G′(x)=−3sin(3x).
Set up integral: Now, let's set up the integral. ∫0πg(x)dx=∫0π(−3sin(3x))dx.
Integrate −3sin(3x): Integrate −3sin(3x) with respect to x. The antiderivative of sin(ax) is −a1cos(ax), so the antiderivative of −3sin(3x) is −3⋅(−31)⋅cos(3x)=cos(3x).
Evaluate integral: Evaluate the integral from 0 to π. ∫0π(−3sin(3x))dx=[cos(3x)]0π=cos(3π)−cos(0).
Calculate values: Calculate the values of cos(3π) and cos(0).cos(3π)=−1 and cos(0)=1.
Substitute values: Substitute these values into the equation. cos(3π)−cos(0)=−1−1=−2.
Final answer: The final answer is −2.
More problems from Evaluate definite integrals using the power rule