Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

G(x)=cos(3x)

g(x)=G^(')(x)

int_(0)^(pi)g(x)dx=

G(x)=cos(3x) G(x)=\cos (3 x) \newlineg(x)=G(x) g(x)=G^{\prime}(x) \newline0πg(x)dx= \int_{0}^{\pi} g(x) d x=

Full solution

Q. G(x)=cos(3x) G(x)=\cos (3 x) \newlineg(x)=G(x) g(x)=G^{\prime}(x) \newline0πg(x)dx= \int_{0}^{\pi} g(x) d x=
  1. Find g(x)g(x): First, we need to find g(x)g(x) by differentiating G(x)G(x).\newlineG(x)=cos(3x)G(x) = \cos(3x), so g(x)=G(x)=3sin(3x)g(x) = G'(x) = -3\sin(3x).
  2. Set up integral: Now, let's set up the integral. 0πg(x)dx=0π(3sin(3x))dx\int_{0}^{\pi}g(x)\,dx = \int_{0}^{\pi}(-3\sin(3x))\,dx.
  3. Integrate 3sin(3x)-3\sin(3x): Integrate 3sin(3x)-3\sin(3x) with respect to xx. The antiderivative of sin(ax)\sin(ax) is 1acos(ax)-\frac{1}{a} \cos(ax), so the antiderivative of 3sin(3x)-3\sin(3x) is 3(13)cos(3x)=cos(3x)-3 \cdot (-\frac{1}{3}) \cdot \cos(3x) = \cos(3x).
  4. Evaluate integral: Evaluate the integral from 00 to π\pi. \newline0π(3sin(3x))dx=[cos(3x)]0π=cos(3π)cos(0).\int_{0}^{\pi}(-3\sin(3x))\,dx = [\cos(3x)]_{0}^{\pi} = \cos(3\pi) - \cos(0).
  5. Calculate values: Calculate the values of cos(3π)\cos(3\pi) and cos(0)\cos(0).cos(3π)=1\cos(3\pi) = -1 and cos(0)=1\cos(0) = 1.
  6. Substitute values: Substitute these values into the equation. \newlinecos(3π)cos(0)=11=2\cos(3\pi) - \cos(0) = -1 - 1 = -2.
  7. Final answer: The final answer is 2-2.

More problems from Evaluate definite integrals using the power rule