Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=-4quad log b=-5quad log c=-9],[log ((c^(9))/(a^(3)b^(8)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=4logb=5logc=9logc9a3b8 \begin{array}{c} \log a=-4 \quad \log b=-5 \quad \log c=-9 \\ \log \frac{c^{9}}{a^{3} b^{8}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=4logb=5logc=9logc9a3b8 \begin{array}{c} \log a=-4 \quad \log b=-5 \quad \log c=-9 \\ \log \frac{c^{9}}{a^{3} b^{8}} \end{array} \newlineAnswer:
  1. Given Logarithms: We are given the logarithms of aa, bb, and cc as loga=4\log a = -4, logb=5\log b = -5, and logc=9\log c = -9. We need to find the value of log(c9a3b8)\log\left(\frac{c^{9}}{a^{3}b^{8}}\right).\newlineUsing the properties of logarithms, we can express the logarithm of a quotient as the difference of logarithms. We can also bring the exponents in front of the logarithms.
  2. Apply Logarithm Properties: Apply the properties of logarithms to the expression log(c9a3b8)\log\left(\frac{c^{9}}{a^{3}b^{8}}\right).log(c9a3b8)=9log(c)3log(a)8log(b)\log\left(\frac{c^{9}}{a^{3}b^{8}}\right) = 9\log(c) - 3\log(a) - 8\log(b)
  3. Substitute Values: Substitute the given values of loga\log a, logb\log b, and logc\log c into the expression.9log(c)3log(a)8log(b)=9(9)3(4)8(5)9\cdot\log(c) - 3\cdot\log(a) - 8\cdot\log(b) = 9\cdot(-9) - 3\cdot(-4) - 8\cdot(-5)
  4. Perform Arithmetic Operations: Perform the arithmetic operations. 9(9)3(4)8(5)=81+12+409*(-9) - 3*(-4) - 8*(-5) = -81 + 12 + 40
  5. Complete Calculation: Complete the calculation to find the numerical value. 81+12+40=81+52=29-81 + 12 + 40 = -81 + 52 = -29

More problems from Evaluate definite integrals using the power rule