Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=-11quad log b=-5quad log c=6],[log ((a^(7)c^(5))/(b^(7)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=11logb=5logc=6loga7c5b7 \begin{array}{c} \log a=-11 \quad \log b=-5 \quad \log c=6 \\ \log \frac{a^{7} c^{5}}{b^{7}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=11logb=5logc=6loga7c5b7 \begin{array}{c} \log a=-11 \quad \log b=-5 \quad \log c=6 \\ \log \frac{a^{7} c^{5}}{b^{7}} \end{array} \newlineAnswer:
  1. Given Logarithms: We are given the logarithms of aa, bb, and cc as loga=11\log a = -11, logb=5\log b = -5, and logc=6\log c = 6. We need to find the value of log(a7c5b7)\log\left(\frac{a^7c^5}{b^7}\right). We can use the properties of logarithms to simplify the expression.
  2. Simplify Expression: Using the properties of logarithms, we can break down the expression log(a7c5b7)\log\left(\frac{a^7c^5}{b^7}\right) into the sum and difference of the individual logarithms: log(a7)+log(c5)log(b7)\log(a^7) + \log(c^5) - \log(b^7).
  3. Apply Power Rule: Now we apply the power rule of logarithms, which states that log(xn)=nlog(x)\log(x^n) = n\log(x), to each term: 7log(a)+5log(c)7log(b)7\log(a) + 5\log(c) - 7\log(b).
  4. Substitute Values: Substitute the given values of loga\log a, logb\log b, and logc\log c into the expression: 7(11)+5(6)7(5)7\cdot(-11) + 5\cdot(6) - 7\cdot(-5).
  5. Perform Arithmetic Operations: Perform the arithmetic operations: 77+30+35-77 + 30 + 35.
  6. Combine Numbers: Combine the numbers to get the final result: 77+30+35=47+35=12-77 + 30 + 35 = -47 + 35 = -12.

More problems from Evaluate definite integrals using the power rule