Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the numerical value of the log expression.

{:[log a=-12quad log b=-8quad log c=-6],[log ((sqrt(b^(3)c^(3)))/(a^(9)))]:}
Answer:

Find the numerical value of the log expression.\newlineloga=12logb=8logc=6logb3c3a9 \begin{array}{c} \log a=-12 \quad \log b=-8 \quad \log c=-6 \\ \log \frac{\sqrt{b^{3} c^{3}}}{a^{9}} \end{array} \newlineAnswer:

Full solution

Q. Find the numerical value of the log expression.\newlineloga=12logb=8logc=6logb3c3a9 \begin{array}{c} \log a=-12 \quad \log b=-8 \quad \log c=-6 \\ \log \frac{\sqrt{b^{3} c^{3}}}{a^{9}} \end{array} \newlineAnswer:
  1. Given values: We are given the values of loga \log a , logb \log b , and logc \log c as 12-12, 8-8, and 6-6 respectively. We need to find the value of log(b3c3a9) \log \left( \frac{\sqrt{b^3 c^3}}{a^9} \right) .
  2. Simplify expression: First, let's simplify the expression inside the logarithm. The square root of a product can be written as the product of the square roots, and the square root of a power can be written as the power with half the exponent. So, b3c3=b3c3=b3/2c3/2 \sqrt{b^3 c^3} = \sqrt{b^3} \cdot \sqrt{c^3} = b^{3/2} \cdot c^{3/2} .
  3. Rewrite using properties: Now, we can rewrite the logarithm using the properties of logarithms. The logarithm of a quotient is the difference of the logarithms, and the logarithm of a product is the sum of the logarithms. So, log(b3c3a9)=log(b3/2c3/2)log(a9) \log \left( \frac{\sqrt{b^3 c^3}}{a^9} \right) = \log(b^{3/2} \cdot c^{3/2}) - \log(a^9) .
  4. Apply power rule: Applying the power rule for logarithms, which states that log(xy)=ylog(x) \log(x^y) = y \cdot \log(x) , we get log(b3/2c3/2)log(a9)=32log(b)+32log(c)9log(a) \log(b^{3/2} \cdot c^{3/2}) - \log(a^9) = \frac{3}{2} \cdot \log(b) + \frac{3}{2} \cdot \log(c) - 9 \cdot \log(a) .
  5. Substitute values: Substituting the given values of loga \log a , logb \log b , and logc \log c into the expression, we get 32(8)+32(6)9(12) \frac{3}{2} \cdot (-8) + \frac{3}{2} \cdot (-6) - 9 \cdot (-12) .
  6. Perform calculations: Performing the calculations, we have 32(8)=12 \frac{3}{2} \cdot (-8) = -12 , 32(6)=9 \frac{3}{2} \cdot (-6) = -9 , and 9(12)=108 9 \cdot (-12) = -108 . So, the expression simplifies to 12+(9)(108) -12 + (-9) - (-108) .
  7. Final numerical value: Finally, we add the numbers together to get the numerical value of the log expression: 129+108=87 -12 - 9 + 108 = 87 .

More problems from Evaluate definite integrals using the power rule