Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr-4)(7x+28)/(x^(2)+x-12)
Choose 1 answer:
(A) 1
(B) 7
(C) -1
(D) The limit doesn't exist

Find limx47x+28x2+x12 \lim_{x \to -4}\frac{7x+28}{x^{2}+x-12} \newline Choose 11 answer:\newline(A) 1 1 \newline(B) 7 7 \newline(C) 1 -1 \newline(D) The limit doesn't exist

Full solution

Q. Find limx47x+28x2+x12 \lim_{x \to -4}\frac{7x+28}{x^{2}+x-12} \newline Choose 11 answer:\newline(A) 1 1 \newline(B) 7 7 \newline(C) 1 -1 \newline(D) The limit doesn't exist
  1. Substitute x Value: First, let's try to directly substitute the value of xx into the expression to see if the limit can be evaluated this way.\newlinelimx47x+28x2+x12\lim_{x \to -4}\frac{7x+28}{x^2+x-12}\newlineSubstitute x=4x = -4:\newline7(4)+28(4)2+(4)12\frac{7(-4)+28}{(-4)^2+(-4)-12}
  2. Perform Calculations: Now, let's perform the calculations:\newline(7(4)+28)/((164)12)(7(-4)+28)/((16-4)-12)\newline(28+28)/(16412)(-28+28)/(16-4-12)\newline0/00/0\newlineWe get an indeterminate form 0/00/0, which means we need to simplify the expression further to find the limit.
  3. Factor Quadratic Polynomial: To simplify the expression, we can factor the quadratic polynomial in the denominator.\newlineThe quadratic x2+x12x^2 + x - 12 can be factored into (x+4)(x3)(x+4)(x-3).\newlineSo, we rewrite the limit expression as:\newlinelimx47x+28(x+4)(x3)\lim_{x \to -4}\frac{7x+28}{(x+4)(x-3)}
  4. Factor Numerator: Notice that the numerator 7x+287x+28 can also be factored because it is a multiple of 77: \newline7x+28=7(x+4)7x+28 = 7(x+4)\newlineNow the limit expression becomes:\newlinelimx47(x+4)(x+4)(x3)\lim_{x \to -4}\frac{7(x+4)}{(x+4)(x-3)}
  5. Cancel Common Factor: We can now cancel out the common factor (x+4)(x+4) from the numerator and the denominator: limx47(x3)\lim_{x \to -4}\frac{7}{(x-3)}
  6. Substitute x Value: With the common factor canceled, we can now substitute x=4x = -4 directly into the simplified expression:\newline7((4)3)\frac{7}{((-4)-3)}\newline7(7)\frac{7}{(-7)}\newline1-1
  7. Final Answer: The limit of the expression as xx approaches 4-4 is 1-1. Therefore, the correct answer is: (C) 1-1

More problems from Find limits of polynomials and rational functions