Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr4)(3x)/((x-2)(x+2)).
Choose 1 answer:
(A) 
(1)/(4)
(B) 
(3)/(4)
(C) 1
(D) The limit doesn't exist

Find limx43x(x2)(x+2) \lim _{x \rightarrow 4} \frac{3 x}{(x-2)(x+2)} .\newlineChoose 11 answer:\newline(A) 14 \frac{1}{4} \newline(B) 34 \frac{3}{4} \newline(C) 11\newline(D) The limit doesn't exist

Full solution

Q. Find limx43x(x2)(x+2) \lim _{x \rightarrow 4} \frac{3 x}{(x-2)(x+2)} .\newlineChoose 11 answer:\newline(A) 14 \frac{1}{4} \newline(B) 34 \frac{3}{4} \newline(C) 11\newline(D) The limit doesn't exist
  1. Identify Limit: Identify the limit that needs to be evaluated.\newlineWe need to find the limit of the function 3x(x2)(x+2)\frac{3x}{(x-2)(x+2)} as xx approaches 44.
  2. Substitute Value: Substitute the value of xx into the function to see if the function is defined at that point.limx43x(x2)(x+2)=34(42)(4+2)\lim_{x \to 4}\frac{3x}{(x-2)(x+2)} = \frac{3\cdot 4}{(4-2)(4+2)}
  3. Perform Calculations: Perform the calculations to evaluate the limit. (3×4)/((42)(4+2))=12/(2×6)=12/12=1(3 \times 4)/((4-2)(4+2)) = 12/(2 \times 6) = 12/12 = 1
  4. Conclude Limit: Conclude the limit based on the calculations.\newlineSince we were able to directly substitute x=4x = 4 into the function and get a result without any indeterminate forms, the limit exists and is equal to 11.

More problems from Find limits of polynomials and rational functions