Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).

lim_(x rarr oo)(sqrt(25x^(4)-28x^(2)))/(3x+5x^(2))
Answer:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx25x428x23x+5x2 \lim _{x \rightarrow \infty} \frac{\sqrt{25 x^{4}-28 x^{2}}}{3 x+5 x^{2}} \newlineAnswer:

Full solution

Q. Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx25x428x23x+5x2 \lim _{x \rightarrow \infty} \frac{\sqrt{25 x^{4}-28 x^{2}}}{3 x+5 x^{2}} \newlineAnswer:
  1. Simplify Expression: To find the limit of the given function as xx approaches infinity, we should first simplify the expression by dividing the numerator and the denominator by the highest power of xx in the denominator, which is x2x^2.
  2. Divide by x2x^2: Divide both the numerator and the denominator by x2x^2:limx(25x428x23x+5x2)=limx(25x4x228x2x23xx2+5x2x2)\lim_{x \to \infty}\left(\frac{\sqrt{25x^{4}-28x^{2}}}{3x+5x^{2}}\right) = \lim_{x \to \infty}\left(\frac{\sqrt{\frac{25x^{4}}{x^2} - \frac{28x^{2}}{x^2}}}{\frac{3x}{x^2} + \frac{5x^{2}}{x^2}}\right)
  3. Simplify Inside Limit: Simplify the expression inside the limit: \lim_{x \rightarrow \infty}\left(\frac{\sqrt{\(25\)x^{\(4\)}/x^\(2\) - \(28\)x^{\(2\)}/x^\(2\)}}{\(3\)x/x^\(2\) + \(5\)x^{\(2\)}/x^\(2\)}\right) = \lim_{x \rightarrow \infty}\left(\frac{\sqrt{\(25\)x^\(2\) - \(28\)}}{\(3\)/x + \(5\)}\right)
  4. Approaching Infinity: As \(x approaches infinity, the terms 3x\frac{3}{x} and 28x2-\frac{28}{x^2} will approach 00. So we can simplify the expression further:\newlinelimx(25x2283x+5)=limx(25x25)\lim_{x \to \infty}\left(\frac{\sqrt{25x^2 - 28}}{\frac{3}{x} + 5}\right) = \lim_{x \to \infty}\left(\frac{\sqrt{25x^2}}{5}\right)
  5. Square Root Simplification: The square root of 25x225x^2 is 5x5x (since xx is approaching infinity, we consider only the positive square root):limx(25x25)=limx(5x5)\lim_{x \to \infty}\left(\frac{\sqrt{25x^2}}{5}\right) = \lim_{x \to \infty}\left(\frac{5x}{5}\right)
  6. Cancel Common Factor: Simplify the expression by canceling out the common factor of 55:limx(5x5)=limxx\lim_{x \rightarrow \infty}\left(\frac{5x}{5}\right) = \lim_{x \rightarrow \infty}x
  7. Limit as xx approaches Infinity: The limit of xx as xx approaches infinity is infinity: limxx=\lim_{x \to \infty}x = \infty

More problems from Find limits of polynomials and rational functions