Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find dxax+b\int \frac{dx}{ax+b}\newline(11) loge(ax+b)+c\log_{e}(ax+b)+c\newline(33) C+1aloge(ax+b)C+\frac{1}{a}\log_{e}(ax+b)

Full solution

Q. Find dxax+b\int \frac{dx}{ax+b}\newline(11) loge(ax+b)+c\log_{e}(ax+b)+c\newline(33) C+1aloge(ax+b)C+\frac{1}{a}\log_{e}(ax+b)
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 1ax+b\frac{1}{ax+b} with respect to xx.
  2. Use Substitution: Use a substitution to simplify the integral.\newlineLet u=ax+bu = ax + b. Then, du=adxdu = a dx, which implies dx=duadx = \frac{du}{a}.
  3. Rewrite in Terms of uu: Rewrite the integral in terms of uu. The integral becomes (1u)(dua)=(1a)(1u)du\int(\frac{1}{u}) \cdot (\frac{du}{a}) = (\frac{1}{a}) \cdot \int(\frac{1}{u}) du.
  4. Evaluate Integral of 1/u1/u: Evaluate the integral of 1/u1/u. The integral of 1/u1/u with respect to uu is extlnu+C ext{ln}|u| + C, where CC is the constant of integration.
  5. Substitute Back: Substitute back the original variable.\newlineSince u=ax+bu = ax + b, we have lnu+C=lnax+b+C\ln|u| + C = \ln|ax + b| + C.
  6. Multiply by Constant: Multiply by the constant 1a\frac{1}{a} from the substitution.\newlineThe final answer is 1alnax+b+C\frac{1}{a} \cdot \ln|ax + b| + C.

More problems from Evaluate definite integrals using the chain rule