Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(x^(2)+8x+52)dx.
Choose 1 answer:
(A) 
(1)/(6)arcsin((x+4)/(6))+C
(B) 
arctan((x+4)/(6))+C
(C) 
(1)/(6)arctan((x+4)/(6))+C
(D) 
arcsin((x+4)/(6))+C

Find 1x2+8x+52dx \int \frac{1}{x^{2}+8 x+52} d x .\newlineChoose 11 answer:\newline(A) 16arcsin(x+46)+C \frac{1}{6} \arcsin \left(\frac{x+4}{6}\right)+C \newline(B) arctan(x+46)+C \arctan \left(\frac{x+4}{6}\right)+C \newline(C) 16arctan(x+46)+C \frac{1}{6} \arctan \left(\frac{x+4}{6}\right)+C \newline(D) arcsin(x+46)+C \arcsin \left(\frac{x+4}{6}\right)+C

Full solution

Q. Find 1x2+8x+52dx \int \frac{1}{x^{2}+8 x+52} d x .\newlineChoose 11 answer:\newline(A) 16arcsin(x+46)+C \frac{1}{6} \arcsin \left(\frac{x+4}{6}\right)+C \newline(B) arctan(x+46)+C \arctan \left(\frac{x+4}{6}\right)+C \newline(C) 16arctan(x+46)+C \frac{1}{6} \arctan \left(\frac{x+4}{6}\right)+C \newline(D) arcsin(x+46)+C \arcsin \left(\frac{x+4}{6}\right)+C
  1. Rewrite with completed square: Rewrite the integral with the completed square.\newline1x2+8x+52dx=1(x+4)2+62dx\int \frac{1}{x^2 + 8x + 52} \, dx = \int \frac{1}{(x + 4)^2 + 6^2} \, dx.
  2. Recognize inverse tangent form: Recognize the integral as a form of the inverse tangent function.\newlineThe integral of 1a2+u2du\frac{1}{a^2 + u^2} \, du is 1aarctan(ua)+C\frac{1}{a} \cdot \arctan\left(\frac{u}{a}\right) + C.\newlineHere, a=6a = 6 and u=x+4u = x + 4.
  3. Calculate using inverse tangent formula: Calculate the integral using the formula for the inverse tangent. 1(x+4)2+62dx=16arctan(x+46)+C\int \frac{1}{(x + 4)^2 + 6^2} dx = \frac{1}{6} \cdot \text{arctan}\left(\frac{x + 4}{6}\right) + C.

More problems from Evaluate definite integrals using the chain rule