Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(x^(2)-6x+13)dx.
Choose 1 answer:
(A) 
(1)/(2)arcsin((x-3)/(2))+C
(B) 
(1)/(4)arcsin((x-3)/(2))+C
(C) 
(1)/(2)arctan((x-3)/(2))+C
(D) 
(1)/(4)arctan((x-3)/(2))+C

Find 1x26x+13dx \int \frac{1}{x^{2}-6 x+13} d x .\newlineChoose 11 answer:\newline(A) 12arcsin(x32)+C \frac{1}{2} \arcsin \left(\frac{x-3}{2}\right)+C \newline(B) 14arcsin(x32)+C \frac{1}{4} \arcsin \left(\frac{x-3}{2}\right)+C \newline(C) 12arctan(x32)+C \frac{1}{2} \arctan \left(\frac{x-3}{2}\right)+C \newline(D) 14arctan(x32)+C \frac{1}{4} \arctan \left(\frac{x-3}{2}\right)+C

Full solution

Q. Find 1x26x+13dx \int \frac{1}{x^{2}-6 x+13} d x .\newlineChoose 11 answer:\newline(A) 12arcsin(x32)+C \frac{1}{2} \arcsin \left(\frac{x-3}{2}\right)+C \newline(B) 14arcsin(x32)+C \frac{1}{4} \arcsin \left(\frac{x-3}{2}\right)+C \newline(C) 12arctan(x32)+C \frac{1}{2} \arctan \left(\frac{x-3}{2}\right)+C \newline(D) 14arctan(x32)+C \frac{1}{4} \arctan \left(\frac{x-3}{2}\right)+C
  1. Rewrite denominator: Rewrite the denominator as a complete square: x26x+13=(x3)2+4x^2 - 6x + 13 = (x - 3)^2 + 4.
  2. Integral form: Now the integral looks like 1(x3)2+4dx\int \frac{1}{(x-3)^2+4}\,dx.
  3. Recognize arctan derivative: Recognize the integral as a form of arctan derivative: 1a2+u2du=1aarctan(ua)+C\int \frac{1}{a^2 + u^2}du = \frac{1}{a}\arctan\left(\frac{u}{a}\right) + C.
  4. Substitute values: Here, a2=4a^2 = 4, so a=2a = 2, and u=x3u = x - 3.
  5. Apply arctan formula: Substitute uu and aa into the arctan formula: 1(x3)2+4dx=12arctan(x32)+C\int \frac{1}{(x-3)^2+4}dx = \frac{1}{2}\arctan\left(\frac{x-3}{2}\right) + C.
  6. Match with answer: Match the result with the answer choices: (C) 12arctan(x32)+C\frac{1}{2}\arctan\left(\frac{x-3}{2}\right)+C is the correct one.

More problems from Evaluate definite integrals using the chain rule