Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find
∫
1
x
2
−
14
x
+
58
d
x
\int \frac{1}{x^{2}-14 x+58} d x
∫
x
2
−
14
x
+
58
1
d
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
21
arcsin
(
x
−
7
3
)
+
C
\frac{1}{21} \arcsin \left(\frac{x-7}{3}\right)+C
21
1
arcsin
(
3
x
−
7
)
+
C
\newline
(B)
1
21
arctan
(
x
−
7
3
)
+
C
\frac{1}{21} \arctan \left(\frac{x-7}{3}\right)+C
21
1
arctan
(
3
x
−
7
)
+
C
\newline
(C)
1
3
arctan
(
x
−
7
3
)
+
C
\frac{1}{3} \arctan \left(\frac{x-7}{3}\right)+C
3
1
arctan
(
3
x
−
7
)
+
C
\newline
(D)
1
3
arcsin
(
x
−
7
3
)
+
C
\frac{1}{3} \arcsin \left(\frac{x-7}{3}\right)+C
3
1
arcsin
(
3
x
−
7
)
+
C
View step-by-step help
Home
Math Problems
Calculus
Evaluate definite integrals using the chain rule
Full solution
Q.
Find
∫
1
x
2
−
14
x
+
58
d
x
\int \frac{1}{x^{2}-14 x+58} d x
∫
x
2
−
14
x
+
58
1
d
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
21
arcsin
(
x
−
7
3
)
+
C
\frac{1}{21} \arcsin \left(\frac{x-7}{3}\right)+C
21
1
arcsin
(
3
x
−
7
)
+
C
\newline
(B)
1
21
arctan
(
x
−
7
3
)
+
C
\frac{1}{21} \arctan \left(\frac{x-7}{3}\right)+C
21
1
arctan
(
3
x
−
7
)
+
C
\newline
(C)
1
3
arctan
(
x
−
7
3
)
+
C
\frac{1}{3} \arctan \left(\frac{x-7}{3}\right)+C
3
1
arctan
(
3
x
−
7
)
+
C
\newline
(D)
1
3
arcsin
(
x
−
7
3
)
+
C
\frac{1}{3} \arcsin \left(\frac{x-7}{3}\right)+C
3
1
arcsin
(
3
x
−
7
)
+
C
Complete the Square:
First, let's
complete the square
for the denominator
x
2
−
14
x
+
58
x^2 - 14x + 58
x
2
−
14
x
+
58
.
\newline
x
2
−
14
x
+
49
+
9
=
(
x
−
7
)
2
+
9
x^2 - 14x + 49 + 9 = (x - 7)^2 + 9
x
2
−
14
x
+
49
+
9
=
(
x
−
7
)
2
+
9
\newline
So, the integral becomes
∫
1
(
(
x
−
7
)
2
+
9
)
d
x
\int \frac{1}{((x-7)^2+9)}dx
∫
((
x
−
7
)
2
+
9
)
1
d
x
.
Use Substitution:
Now, let's use a substitution to make it look like the
arctan derivative
.
\newline
Let
u
=
x
−
7
3
u = \frac{x - 7}{3}
u
=
3
x
−
7
, then
d
u
=
1
3
d
x
du = \frac{1}{3}dx
d
u
=
3
1
d
x
, so
d
x
=
3
d
u
dx = 3du
d
x
=
3
d
u
.
Substitute
u
u
u
and
d
x
dx
d
x
:
Substitute
u
u
u
and
d
x
dx
d
x
into the integral.
∫
1
(
x
−
7
)
2
+
9
d
x
=
∫
1
(
3
u
)
2
+
9
⋅
3
d
u
=
∫
1
9
u
2
+
9
⋅
3
d
u
=
∫
1
9
(
u
2
+
1
)
⋅
3
d
u
.
\int \frac{1}{(x-7)^2+9}dx = \int \frac{1}{(3u)^2+9} \cdot 3du = \int \frac{1}{9u^2+9} \cdot 3du = \int \frac{1}{9(u^2+1)} \cdot 3du.
∫
(
x
−
7
)
2
+
9
1
d
x
=
∫
(
3
u
)
2
+
9
1
⋅
3
d
u
=
∫
9
u
2
+
9
1
⋅
3
d
u
=
∫
9
(
u
2
+
1
)
1
⋅
3
d
u
.
Simplify the Integral:
Simplify the integral.
∫
1
9
(
u
2
+
1
)
⋅
3
d
u
=
∫
1
3
(
u
2
+
1
)
d
u
\int\frac{1}{9(u^2+1)} \cdot 3du = \int\frac{1}{3(u^2+1)}du
∫
9
(
u
2
+
1
)
1
⋅
3
d
u
=
∫
3
(
u
2
+
1
)
1
d
u
.
Recognize Integral:
Recognize that the integral of
1
u
2
+
1
\frac{1}{u^2+1}
u
2
+
1
1
is
arctan
(
u
)
\arctan(u)
arctan
(
u
)
. So,
∫
1
3
(
u
2
+
1
)
d
u
=
1
3
arctan
(
u
)
+
C
\int \frac{1}{3(u^2+1)}du = \frac{1}{3}\arctan(u) + C
∫
3
(
u
2
+
1
)
1
d
u
=
3
1
arctan
(
u
)
+
C
.
Substitute
u
u
u
back:
Substitute
u
u
u
back in terms of
x
x
x
.
1
3
\frac{1}{3}
3
1
arctan(
u
u
u
) +
C
C
C
=
1
3
\frac{1}{3}
3
1
arctan
(
x
−
7
3
)
\left(\frac{x-7}{3}\right)
(
3
x
−
7
)
+
C
C
C
.
More problems from Evaluate definite integrals using the chain rule
Question
The number of subscribers to a magazine is changing at a rate of
r
(
t
)
r(t)
r
(
t
)
subscribers per month (where
t
t
t
is time in months).
\newline
What does
∫
8
10
r
′
(
t
)
d
t
=
7
\int_{8}^{10} r^{\prime}(t) d t=7
∫
8
10
r
′
(
t
)
d
t
=
7
mean?
\newline
Choose
1
1
1
answer:
\newline
(A) The rate of change of number of subscribers increased by
7
7
7
subscribers per month between
t
=
8
t=8
t
=
8
and
t
=
10
t=10
t
=
10
months.
\newline
(B) As of month
10
10
10
, the magazine had
7
7
7
subscribers.
\newline
(C) The number of subscribers increased by
7
7
7
between
t
=
8
t=8
t
=
8
and
t
=
10
t=10
t
=
10
months.
\newline
(D) The average rate of change in subscribers between month
8
8
8
and month
10
10
10
was
7
7
7
subscribers per month.
Get tutor help
Posted 9 months ago
Question
Consider the following problem:
\newline
The water level under a bridge is changing at a rate of
r
(
t
)
=
40
sin
(
π
t
6
)
r(t)=40 \sin \left(\frac{\pi t}{6}\right)
r
(
t
)
=
40
sin
(
6
π
t
)
centimeters per hour (where
t
t
t
is the time in hours). At time
t
=
3
t=3
t
=
3
, the water level is
91
91
91
centimeters. By how much does the water level change during the
4
th
4^{\text {th }}
4
th
hour?
\newline
Which expression can we use to solve the problem?
\newline
Choose
1
1
1
answer:
\newline
(A)
∫
0
4
r
(
t
)
d
t
\int_{0}^{4} r(t) d t
∫
0
4
r
(
t
)
d
t
\newline
(B)
∫
4
5
r
(
t
)
d
t
\int_{4}^{5} r(t) d t
∫
4
5
r
(
t
)
d
t
\newline
(C)
∫
3
4
r
(
t
)
d
t
\int_{3}^{4} r(t) d t
∫
3
4
r
(
t
)
d
t
\newline
(D)
∫
4
4
r
(
t
)
d
t
\int_{4}^{4} r(t) d t
∫
4
4
r
(
t
)
d
t
Get tutor help
Posted 9 months ago
Question
The base of a solid is the region enclosed by the graphs of
y
=
sin
(
x
)
y=\sin (x)
y
=
sin
(
x
)
and
y
=
4
−
x
y=4-\sqrt{x}
y
=
4
−
x
, between
x
=
2
x=2
x
=
2
and
x
=
7
x=7
x
=
7
.
\newline
Cross sections of the solid perpendicular to the
x
x
x
-axis are rectangles whose height is
2
x
2 x
2
x
.
\newline
Which one of the definite integrals gives the volume of the solid?
\newline
Choose
1
1
1
answer:
\newline
(A)
∫
2
7
[
sin
(
x
)
+
x
−
4
]
⋅
2
x
d
x
\int_{2}^{7}[\sin (x)+\sqrt{x}-4] \cdot 2 x d x
∫
2
7
[
sin
(
x
)
+
x
−
4
]
⋅
2
x
d
x
\newline
(B)
∫
2
7
[
sin
2
(
x
)
−
(
4
−
x
)
2
]
d
x
\int_{2}^{7}\left[\sin ^{2}(x)-(4-\sqrt{x})^{2}\right] d x
∫
2
7
[
sin
2
(
x
)
−
(
4
−
x
)
2
]
d
x
\newline
(C)
∫
2
7
[
4
−
x
−
sin
(
x
)
]
⋅
2
x
d
x
\int_{2}^{7}[4-\sqrt{x}-\sin (x)] \cdot 2 x d x
∫
2
7
[
4
−
x
−
sin
(
x
)]
⋅
2
x
d
x
\newline
(D)
∫
2
7
[
(
4
−
x
)
2
−
sin
2
(
x
)
]
d
x
\int_{2}^{7}\left[(4-\sqrt{x})^{2}-\sin ^{2}(x)\right] d x
∫
2
7
[
(
4
−
x
)
2
−
sin
2
(
x
)
]
d
x
Get tutor help
Posted 9 months ago
Question
(
1
×
(
(
1
2
)
n
−
1
)
)
/
(
(
1
2
)
−
1
)
\left(1\times\left(\left(\frac{1}{2}\right)^n-1\right)\right)\bigg/\left(\left(\frac{1}{2}\right)-1\right)
(
1
×
(
(
2
1
)
n
−
1
)
)
/
(
(
2
1
)
−
1
)
Get tutor help
Posted 8 months ago
Question
Solve
∫
1
(
x
−
2
)
(
x
2
+
x
+
1
)
d
x
\int \frac{1}{(x-2)(x^{2}+x+1)}\,dx
∫
(
x
−
2
)
(
x
2
+
x
+
1
)
1
d
x
.
Get tutor help
Posted 8 months ago
Question
What is the integral of the function
f
(
x
)
=
sin
(
2
x
)
f(x) = \sin(2x)
f
(
x
)
=
sin
(
2
x
)
?
\newline
−
1
2
cos
(
x
)
+
C
\frac{-1}{2}\cos(x) + C
2
−
1
cos
(
x
)
+
C
\newline
1
2
sin
(
x
)
+
C
\frac{1}{2}\sin(x) + C
2
1
sin
(
x
)
+
C
\newline
−
1
2
cos
(
2
x
)
+
C
\frac{-1}{2}\cos(2x) + C
2
−
1
cos
(
2
x
)
+
C
\newline
1
2
sin
(
2
x
)
+
C
\frac{1}{2}\sin(2x) + C
2
1
sin
(
2
x
)
+
C
Get tutor help
Posted 8 months ago
Question
What is the integral of the function
f
(
x
)
=
s
i
n
(
2
x
)
\ f(x) = sin(2x)
f
(
x
)
=
s
in
(
2
x
)
?
\newline
−
1
2
cos
(
x
)
+
C
\frac{-1}{2}\cos(x) + C
2
−
1
cos
(
x
)
+
C
\newline
1
2
sin
(
x
)
+
C
\frac{1}{2} \sin(x) + C
2
1
sin
(
x
)
+
C
\newline
−
1
2
cos
(
2
x
)
+
C
\frac{-1}{2}\cos(2x) + C
2
−
1
cos
(
2
x
)
+
C
\newline
1
2
sin
(
2
x
)
+
c
\frac{1}{2} \sin(2x) + c
2
1
sin
(
2
x
)
+
c
Get tutor help
Posted 8 months ago
Question
Suppose
∫
2
4
f
(
2
x
)
d
x
=
10
\int_{2}^{4} f(2x) \, dx = 10
∫
2
4
f
(
2
x
)
d
x
=
10
. Then
∫
4
8
f
(
u
)
d
u
=
\int_{4}^{8} f(u) \, du =
∫
4
8
f
(
u
)
d
u
=
Get tutor help
Posted 8 months ago
Question
Find
d
d
t
∫
2
t
4
e
x
2
d
x
\frac{d}{dt}\int_{2}^{t^{4}}e^{x^{2}}dx
d
t
d
∫
2
t
4
e
x
2
d
x
Get tutor help
Posted 8 months ago
Question
Evaluate and write the answer in scientific notation:
\newline
(
1.48
×
1
0
3
)
(
7
×
1
0
4
)
÷
8.2
×
1
0
12
(1.48\times10^{3})(7\times10^{4})\div8.2\times10^{12}
(
1.48
×
1
0
3
)
(
7
×
1
0
4
)
÷
8.2
×
1
0
12
Get tutor help
Posted 8 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant