Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(x^(2)-14 x+58)dx.
Choose 1 answer:
(A) 
(1)/(21)arcsin((x-7)/(3))+C
(B) 
(1)/(21)arctan((x-7)/(3))+C
(C) 
(1)/(3)arctan((x-7)/(3))+C
(D) 
(1)/(3)arcsin((x-7)/(3))+C

Find 1x214x+58dx \int \frac{1}{x^{2}-14 x+58} d x .\newlineChoose 11 answer:\newline(A) 121arcsin(x73)+C \frac{1}{21} \arcsin \left(\frac{x-7}{3}\right)+C \newline(B) 121arctan(x73)+C \frac{1}{21} \arctan \left(\frac{x-7}{3}\right)+C \newline(C) 13arctan(x73)+C \frac{1}{3} \arctan \left(\frac{x-7}{3}\right)+C \newline(D) 13arcsin(x73)+C \frac{1}{3} \arcsin \left(\frac{x-7}{3}\right)+C

Full solution

Q. Find 1x214x+58dx \int \frac{1}{x^{2}-14 x+58} d x .\newlineChoose 11 answer:\newline(A) 121arcsin(x73)+C \frac{1}{21} \arcsin \left(\frac{x-7}{3}\right)+C \newline(B) 121arctan(x73)+C \frac{1}{21} \arctan \left(\frac{x-7}{3}\right)+C \newline(C) 13arctan(x73)+C \frac{1}{3} \arctan \left(\frac{x-7}{3}\right)+C \newline(D) 13arcsin(x73)+C \frac{1}{3} \arcsin \left(\frac{x-7}{3}\right)+C
  1. Complete the Square: First, let's complete the square for the denominator x214x+58x^2 - 14x + 58. \newlinex214x+49+9=(x7)2+9x^2 - 14x + 49 + 9 = (x - 7)^2 + 9\newlineSo, the integral becomes 1((x7)2+9)dx\int \frac{1}{((x-7)^2+9)}dx.
  2. Use Substitution: Now, let's use a substitution to make it look like the arctan derivative.\newlineLet u=x73u = \frac{x - 7}{3}, then du=13dxdu = \frac{1}{3}dx, so dx=3dudx = 3du.
  3. Substitute uu and dxdx: Substitute uu and dxdx into the integral.1(x7)2+9dx=1(3u)2+93du=19u2+93du=19(u2+1)3du.\int \frac{1}{(x-7)^2+9}dx = \int \frac{1}{(3u)^2+9} \cdot 3du = \int \frac{1}{9u^2+9} \cdot 3du = \int \frac{1}{9(u^2+1)} \cdot 3du.
  4. Simplify the Integral: Simplify the integral. 19(u2+1)3du=13(u2+1)du\int\frac{1}{9(u^2+1)} \cdot 3du = \int\frac{1}{3(u^2+1)}du.
  5. Recognize Integral: Recognize that the integral of 1u2+1\frac{1}{u^2+1} is arctan(u)\arctan(u). So, 13(u2+1)du=13arctan(u)+C\int \frac{1}{3(u^2+1)}du = \frac{1}{3}\arctan(u) + C.
  6. Substitute uu back: Substitute uu back in terms of xx.13\frac{1}{3}arctan(uu) + CC = 13\frac{1}{3}arctan(x73)\left(\frac{x-7}{3}\right) + CC.

More problems from Evaluate definite integrals using the chain rule