Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(x^(2)+10 x+41)dx.
Choose 1 answer:
(A) 
(1)/(4)arctan((x+5)/(4))+C
B 
(1)/(4)arcsin((x+5)/(4))+C
(C) 
(1)/(20)arcsin((x+5)/(4))+C
(D) 
(1)/(20)arctan((x+5)/(4))+C

Find 1x2+10x+41dx \int \frac{1}{x^{2}+10 x+41} d x .\newlineChoose 11 answer:\newline(A) 14arctan(x+54)+C \frac{1}{4} \arctan \left(\frac{x+5}{4}\right)+C \newline(B)14arcsin(x+54)+C \frac{1}{4} \arcsin \left(\frac{x+5}{4}\right)+C \newline(C) 120arcsin(x+54)+C \frac{1}{20} \arcsin \left(\frac{x+5}{4}\right)+C \newline(D) 120arctan(x+54)+C \frac{1}{20} \arctan \left(\frac{x+5}{4}\right)+C

Full solution

Q. Find 1x2+10x+41dx \int \frac{1}{x^{2}+10 x+41} d x .\newlineChoose 11 answer:\newline(A) 14arctan(x+54)+C \frac{1}{4} \arctan \left(\frac{x+5}{4}\right)+C \newline(B)14arcsin(x+54)+C \frac{1}{4} \arcsin \left(\frac{x+5}{4}\right)+C \newline(C) 120arcsin(x+54)+C \frac{1}{20} \arcsin \left(\frac{x+5}{4}\right)+C \newline(D) 120arctan(x+54)+C \frac{1}{20} \arctan \left(\frac{x+5}{4}\right)+C
  1. Complete the square: Complete the square for the denominator x2+10x+41x^2 + 10x + 41.(x2+10x+25)+16=(x+5)2+42 (x^2 + 10x + 25) + 16 = (x + 5)^2 + 4^2
  2. Rewrite the integral: Rewrite the integral using the completed square. 1(x+5)2+42dx\int \frac{1}{(x + 5)^2 + 4^2} \, dx
  3. Recognize the integral: Recognize the integral as a form of the inverse tangent function. 1u2+a2du=1aarctan(ua)+C\int \frac{1}{u^2 + a^2} du = \frac{1}{a} \arctan(\frac{u}{a}) + C, where u=x+5u = x + 5 and a=4a = 4
  4. Calculate the integral: Calculate the integral using the formula for arctan. (14)arctan(x+54)+C(\frac{1}{4}) \arctan(\frac{x + 5}{4}) + C

More problems from Evaluate definite integrals using the chain rule