Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(sqrt(-x^(2)-6x+40))dx.
Choose 1 answer:
(A) 
(1)/(14)arctan((x+3)/(7))+C
(B) 
(1)/(14)arcsin((x+3)/(7))+C
(c) 
arctan((x+3)/(7))+C
() 
arcsin((x+3)/(7))+C

Find 1x26x+40dx \int \frac{1}{\sqrt{-x^{2}-6 x+40}} d x .\newlineChoose 11 answer:\newline(A) 114arctan(x+37)+C \frac{1}{14} \arctan \left(\frac{x+3}{7}\right)+C \newline(B) 114arcsin(x+37)+C \frac{1}{14} \arcsin \left(\frac{x+3}{7}\right)+C \newline(c) arctan(x+37)+C \arctan \left(\frac{x+3}{7}\right)+C \newline() arcsin(x+37)+C \arcsin \left(\frac{x+3}{7}\right)+C

Full solution

Q. Find 1x26x+40dx \int \frac{1}{\sqrt{-x^{2}-6 x+40}} d x .\newlineChoose 11 answer:\newline(A) 114arctan(x+37)+C \frac{1}{14} \arctan \left(\frac{x+3}{7}\right)+C \newline(B) 114arcsin(x+37)+C \frac{1}{14} \arcsin \left(\frac{x+3}{7}\right)+C \newline(c) arctan(x+37)+C \arctan \left(\frac{x+3}{7}\right)+C \newline() arcsin(x+37)+C \arcsin \left(\frac{x+3}{7}\right)+C
  1. Recognize inverse trigonometric function: Next, we recognize that the integral is in the form of an inverse trigonometric function, specifically arcsin\arcsin. The general form is 1a2u2du=1aarcsin(ua)+C\int \frac{1}{\sqrt{a^2 - u^2}} \, du = \frac{1}{a}\arcsin\left(\frac{u}{a}\right) + C. Here, a=7a = 7 and u=x+3u = x + 3. So the integral becomes 17arcsin(x+37)+C\frac{1}{7}\arcsin\left(\frac{x + 3}{7}\right) + C.
  2. Substitute values: Finally, we check the answer choices to see which one matches our result.\newlineThe correct answer is (B) (114)arcsin((x+3)7)+C(\frac{1}{14})\arcsin(\frac{(x + 3)}{7}) + C.\newlineWait, we made a mistake in the coefficient. It should be (17)(\frac{1}{7}) not (114)(\frac{1}{14}).

More problems from Evaluate definite integrals using the chain rule