Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(sqrt(-x^(2)-14 x-48))dx.
Choose 1 answer:
(A) 
(1)/(2)arctan((x+7)/(2))+C
(B) 
arcsin(x+7)+C
(C) 
arctan(x+7)+C
(D) 
(1)/(2)arcsin((x+7)/(2))+C

Find 1x214x48dx \int \frac{1}{\sqrt{-x^{2}-14 x-48}} d x .\newlineChoose 11 answer:\newline(A) 12arctan(x+72)+C \frac{1}{2} \arctan \left(\frac{x+7}{2}\right)+C \newline(B) arcsin(x+7)+C \arcsin (x+7)+C \newline(C) arctan(x+7)+C \arctan (x+7)+C \newline(D) 12arcsin(x+72)+C \frac{1}{2} \arcsin \left(\frac{x+7}{2}\right)+C

Full solution

Q. Find 1x214x48dx \int \frac{1}{\sqrt{-x^{2}-14 x-48}} d x .\newlineChoose 11 answer:\newline(A) 12arctan(x+72)+C \frac{1}{2} \arctan \left(\frac{x+7}{2}\right)+C \newline(B) arcsin(x+7)+C \arcsin (x+7)+C \newline(C) arctan(x+7)+C \arctan (x+7)+C \newline(D) 12arcsin(x+72)+C \frac{1}{2} \arcsin \left(\frac{x+7}{2}\right)+C
  1. Complete the square: First, let's complete the square for the expression under the square root to make it look like a standard integral form.\newline(x214x48)=(x2+14x+49)+1=(x+7)2+1(-x^2 - 14x - 48) = -(x^2 + 14x + 49) + 1 = -(x + 7)^2 + 1
  2. Substitute u=x+7u = x + 7: Now, let's substitute u=x+7u = x + 7, then du=dxdu = dx. So, the integral becomes 11u2du\int \frac{1}{\sqrt{1 - u^2}}\,du.
  3. Standard integral form: This is a standard integral form that resembles the inverse sine function, arcsin(u)\arcsin(u). So, the integral becomes arcsin(u)+C\arcsin(u) + C.
  4. Substitute back uu: Substitute back u=x+7u = x + 7 to get the final answer.arcsin(x+7)+C.\arcsin(x + 7) + C.
  5. Match with options: Now, let's match our answer with the given options.\newlineThe correct answer is (B)arcsin(x+7)+C(B) \arcsin(x+7)+C.

More problems from Evaluate definite integrals using the chain rule