Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(sqrt(-x^(2)+12 x-32))dx.
Choose 1 answer:
(A) 
arcsin((x-6)/(2))+C
(B) 
(1)/(12)arctan((x-6)/(2))+C
(C) 
(1)/(12)arcsin((x-6)/(2))+C
(D) 
arctan((x-6)/(2))+C

Find 1x2+12x32dx \int \frac{1}{\sqrt{-x^{2}+12 x-32}} d x .\newlineChoose 11 answer:\newline(A) arcsin(x62)+C \arcsin \left(\frac{x-6}{2}\right)+C \newline(B) 112arctan(x62)+C \frac{1}{12} \arctan \left(\frac{x-6}{2}\right)+C \newline(C) 112arcsin(x62)+C \frac{1}{12} \arcsin \left(\frac{x-6}{2}\right)+C \newline(D) arctan(x62)+C \arctan \left(\frac{x-6}{2}\right)+C

Full solution

Q. Find 1x2+12x32dx \int \frac{1}{\sqrt{-x^{2}+12 x-32}} d x .\newlineChoose 11 answer:\newline(A) arcsin(x62)+C \arcsin \left(\frac{x-6}{2}\right)+C \newline(B) 112arctan(x62)+C \frac{1}{12} \arctan \left(\frac{x-6}{2}\right)+C \newline(C) 112arcsin(x62)+C \frac{1}{12} \arcsin \left(\frac{x-6}{2}\right)+C \newline(D) arctan(x62)+C \arctan \left(\frac{x-6}{2}\right)+C
  1. Substitute uu: Now, let's substitute u=x62u = \frac{x - 6}{2}, which means du=12dxdu = \frac{1}{2} dx or dx=2dudx = 2 du. The integral becomes 14u22du\int \frac{1}{\sqrt{4 - u^2}} \cdot 2 du.
  2. Simplify integral: Simplify the integral to get 214u2du2 \int \frac{1}{\sqrt{4 - u^2}} du. Recognize that this is the integral form of arcsin(u2)\arcsin(\frac{u}{2}), since the derivative of arcsin(u2)\arcsin(\frac{u}{2}) is 11(u2)2\frac{1}{\sqrt{1 - (\frac{u}{2})^2}}.
  3. Recognize integral form: Now, integrate to get 2arcsin(u2)+C2 \cdot \arcsin(\frac{u}{2}) + C.
  4. Integrate to get: Substitute back for uu to get 2arcsin(x64)+C2 \cdot \arcsin\left(\frac{x - 6}{4}\right) + C. But wait, there's a mistake here. The integral should be arcsin(u2)\arcsin\left(\frac{u}{2}\right) without the 22 in front, since we already accounted for the dx=2dudx = 2 du substitution.

More problems from Evaluate definite integrals using the chain rule