Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(sqrt(-x^(2)+10 x+11))dx.
Choose 1 answer:
(A) 
(1)/(6)arctan((x-5)/(6))+C
(B) 
(1)/(6)arcsin((x-5)/(6))+C
(C) 
arcsin((x-5)/(6))+C
(D) 
arctan((x-5)/(6))+C

Find 1x2+10x+11dx \int \frac{1}{\sqrt{-x^{2}+10 x+11}} d x .\newlineChoose 11 answer:\newline(A) 16arctan(x56)+C \frac{1}{6} \arctan \left(\frac{x-5}{6}\right)+C \newline(B) 16arcsin(x56)+C \frac{1}{6} \arcsin \left(\frac{x-5}{6}\right)+C \newline(C) arcsin(x56)+C \arcsin \left(\frac{x-5}{6}\right)+C \newline(D) arctan(x56)+C \arctan \left(\frac{x-5}{6}\right)+C

Full solution

Q. Find 1x2+10x+11dx \int \frac{1}{\sqrt{-x^{2}+10 x+11}} d x .\newlineChoose 11 answer:\newline(A) 16arctan(x56)+C \frac{1}{6} \arctan \left(\frac{x-5}{6}\right)+C \newline(B) 16arcsin(x56)+C \frac{1}{6} \arcsin \left(\frac{x-5}{6}\right)+C \newline(C) arcsin(x56)+C \arcsin \left(\frac{x-5}{6}\right)+C \newline(D) arctan(x56)+C \arctan \left(\frac{x-5}{6}\right)+C
  1. Recognize Integral Form: Next, we recognize that the integral is in the form of an arcsin function, where the integral of 1a2u2du\frac{1}{\sqrt{a^2 - u^2}} \, du is arcsin(ua)+C\arcsin(\frac{u}{a}) + C. Here, a=6a = 6 and u=x5u = x - 5. So, the integral becomes: (16)arcsin(x56)+C(\frac{1}{6})\arcsin(\frac{x - 5}{6}) + C
  2. Substitute Values: Now we check the answer choices to see which one matches our result.\newlineThe correct answer is (B) (16)arcsin((x5)6)+C(\frac{1}{6})\arcsin(\frac{(x - 5)}{6}) + C.

More problems from Evaluate definite integrals using the chain rule