Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
int(1)/(3x^(2)+6x+78)dx.
Choose 1 answer:
(A) 
arctan((x+1)/(5))+C
(B) 
arcsin((x+1)/(5))+C
(c) 
(1)/(15)arctan((x+1)/(5))+C
(D) 
(1)/(15)arcsin((x+1)/(5))+C

Find 13x2+6x+78dx \int \frac{1}{3 x^{2}+6 x+78} d x .\newlineChoose 11 answer:\newline(A) arctan(x+15)+C \arctan \left(\frac{x+1}{5}\right)+C \newline(B) arcsin(x+15)+C \arcsin \left(\frac{x+1}{5}\right)+C \newline(c) 115arctan(x+15)+C \frac{1}{15} \arctan \left(\frac{x+1}{5}\right)+C \newline(D) 115arcsin(x+15)+C \frac{1}{15} \arcsin \left(\frac{x+1}{5}\right)+C

Full solution

Q. Find 13x2+6x+78dx \int \frac{1}{3 x^{2}+6 x+78} d x .\newlineChoose 11 answer:\newline(A) arctan(x+15)+C \arctan \left(\frac{x+1}{5}\right)+C \newline(B) arcsin(x+15)+C \arcsin \left(\frac{x+1}{5}\right)+C \newline(c) 115arctan(x+15)+C \frac{1}{15} \arctan \left(\frac{x+1}{5}\right)+C \newline(D) 115arcsin(x+15)+C \frac{1}{15} \arcsin \left(\frac{x+1}{5}\right)+C
  1. Complete the Square: First, let's complete the square for the quadratic in the denominator.\newline3x2+6x+78=3(x2+2x+26)3x^2 + 6x + 78 = 3(x^2 + 2x + 26)\newlineNow, we need to add and subtract (2/2)2=1(2/2)^2 = 1 inside the parenthesis to complete the square.\newline3(x2+2x+11+26)3(x^2 + 2x + 1 - 1 + 26)\newline3((x+1)2+25)3((x + 1)^2 + 25)
  2. Rewrite with Completed Square: Now, we rewrite the integral with the completed square. \newline13x2+6x+78dx=13((x+1)2+25)dx\int\frac{1}{3x^{2}+6x+78}\,dx = \int\frac{1}{3((x+1)^{2}+25)}\,dx\newlinePull out the constant 33 from the denominator.\newline=131(x+1)2+25dx= \frac{1}{3} \cdot \int\frac{1}{(x+1)^{2}+25}\,dx
  3. Apply Arctangent Integral Formula: Recognize that this is in the form of an arctangent integral.\newlineThe integral of 1a2+u2du\frac{1}{a^2 + u^2}du is 1aarctan(ua)+C\frac{1}{a} \cdot \arctan(\frac{u}{a}) + C, where aa is a constant.\newlineHere, a2=25a^2 = 25, so a=5a = 5.
  4. Integrate Using Arctangent Formula: Now, integrate using the arctangent formula.\newline(13)1(x+1)2+25dx=(13)(15)arctan(x+15)+C(\frac{1}{3}) \cdot \int \frac{1}{(x+1)^2+25}dx = (\frac{1}{3}) \cdot (\frac{1}{5}) \cdot \arctan(\frac{x+1}{5}) + C\newlineSimplify the constants.\newline=(115)arctan(x+15)+C= (\frac{1}{15}) \cdot \arctan(\frac{x+1}{5}) + C

More problems from Evaluate definite integrals using the chain rule