Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
(d^(2))/(dx^(2))[5ln(x^(5))]

Find d2dx2[5ln(x5)] \frac{d^{2}}{d x^{2}}\left[5 \ln \left(x^{5}\right)\right]

Full solution

Q. Find d2dx2[5ln(x5)] \frac{d^{2}}{d x^{2}}\left[5 \ln \left(x^{5}\right)\right]
  1. Differentiate Function: Differentiate the function 5ln(x5)5\ln(x^5) with respect to xx for the first time.\newlineUse the chain rule for differentiation: ddx[ln(u)]=1ududx\frac{d}{dx}[\ln(u)] = \frac{1}{u}\frac{du}{dx}, where u=x5u = x^5.\newlineFirst derivative: ddx[5ln(x5)]=5ddx[ln(x5)]=51x5ddx[x5]=51x55x4=25x\frac{d}{dx}[5\ln(x^5)] = 5 \cdot \frac{d}{dx}[\ln(x^5)] = 5 \cdot \frac{1}{x^5} \cdot \frac{d}{dx}[x^5] = 5 \cdot \frac{1}{x^5} \cdot 5x^4 = \frac{25}{x}.
  2. Use Chain Rule: Differentiate the result from Step 11 with respect to xx for the second time to find the second derivative.\newlineSecond derivative: d2dx2[5ln(x5)]=ddx[25x]=25x2.\frac{d^2}{dx^2}[5\ln(x^5)] = \frac{d}{dx}[\frac{25}{x}] = -\frac{25}{x^2}.

More problems from Find indefinite integrals using the substitution