Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the curve given by the equation 
2x^(2)-12 x+y^(3)=107. It can be shown that 
(dy)/(dx)=(4(3-x))/(3y^(2)).
Find the point on the curve where the line tangent to the curve is horizontal.

Consider the curve given by the equation 2x212x+y3=107 2 x^{2}-12 x+y^{3}=107 . It can be shown that dydx=4(3x)3y2 \frac{d y}{d x}=\frac{4(3-x)}{3 y^{2}} .\newlineFind the point on the curve where the line tangent to the curve is horizontal. \newline((\square , )\square)

Full solution

Q. Consider the curve given by the equation 2x212x+y3=107 2 x^{2}-12 x+y^{3}=107 . It can be shown that dydx=4(3x)3y2 \frac{d y}{d x}=\frac{4(3-x)}{3 y^{2}} .\newlineFind the point on the curve where the line tangent to the curve is horizontal. \newline((\square , )\square)
  1. Solve for x: Solve for x:\newline4(3x)=04(3 - x) = 0\newline124x=012 - 4x = 0\newline4x=124x = 12\newlinex=3x = 3
  2. Find y-coordinate: Now that we have the x-coordinate, we need to find the corresponding y-coordinate on the curve. We plug x=3x = 3 into the original equation of the curve to find yy.\newline2x212x+y3=1072x^{2} - 12x + y^{3} = 107\newline2(3)212(3)+y3=1072(3)^{2} - 12(3) + y^{3} = 107
  3. Calculate y3y^{3}: Calculate the value of y3y^{3}:2(9)36+y3=1072(9) - 36 + y^{3} = 1071836+y3=10718 - 36 + y^{3} = 107y3=107+3618y^{3} = 107 + 36 - 18y3=125y^{3} = 125
  4. Find yy: Find the cube root of 125125 to get yy:y=125(1/3)y = 125^{(1/3)}y=5y = 5

More problems from Find indefinite integrals using the substitution