Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

F(x)=int_(2)^(2x)sqrt(15-t)dt

F^(')(x)=

F(x)=22x15tdt F(x)=\int_{2}^{2 x} \sqrt{15-t} d t \newlineF(x)= F^{\prime}(x)=

Full solution

Q. F(x)=22x15tdt F(x)=\int_{2}^{2 x} \sqrt{15-t} d t \newlineF(x)= F^{\prime}(x)=
  1. Apply Fundamental Theorem of Calculus: Use the Fundamental Theorem of Calculus Part 11, which states that if F(x)=ag(x)f(t)dtF(x) = \int_{a}^{g(x)}f(t)\,dt, then F(x)=f(g(x))g(x)F'(x) = f(g(x)) \cdot g'(x).
  2. Identify f(t)f(t) and g(x)g(x): Identify f(t)f(t) as 15t\sqrt{15-t} and g(x)g(x) as 2x2x.
  3. Calculate g(x)g'(x): Calculate g(x)g'(x), which is the derivative of 2x2x with respect to xx.\newlineg(x)=ddx(2x)=2g'(x) = \frac{d}{dx}(2x) = 2.
  4. Substitute into F(x)F'(x): Substitute g(x)=2xg(x) = 2x and g(x)=2g'(x) = 2 into the formula F(x)=f(g(x))g(x)F'(x) = f(g(x)) \cdot g'(x).\newlineF(x)=152x2F'(x) = \sqrt{15 - 2x} \cdot 2.
  5. Simplify F(x)F'(x): Simplify the expression for F(x)F'(x).F(x)=2152xF'(x) = 2 \cdot \sqrt{15 - 2x}.

More problems from Evaluate definite integrals using the power rule