Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f^(')(x)=-(50)/(x^(3)) and 
f(1)=20.

f(5)=

f(x)=50x3 f^{\prime}(x)=-\frac{50}{x^{3}} and f(1)=20 f(1)=20 .\newlinef(5)= f(5)=

Full solution

Q. f(x)=50x3 f^{\prime}(x)=-\frac{50}{x^{3}} and f(1)=20 f(1)=20 .\newlinef(5)= f(5)=
  1. Derivative Calculation: We have the derivative f(x)=50x3f'(x) = -\frac{50}{x^3}. To find f(5)f(5), we need to integrate f(x)f'(x) from 11 to 55.
  2. Antiderivative Calculation: The antiderivative of f(x)f'(x) is f(x)=502x2+Cf(x) = -\frac{50}{2x^2} + C, where CC is the constant of integration.
  3. Constant of Integration: We know f(1)=20f(1) = 20, so plug in x=1x = 1 to find CC: 20=50212+C20 = -\frac{50}{2 \cdot 1^2} + C.
  4. Finding f(5)f(5): Simplify to find CC: 20=25+C20 = -25 + C, so C=20+25C = 20 + 25, C=45C = 45.
  5. Simplification: Now we have f(x)=502x2+45f(x) = -\frac{50}{2x^2} + 45. Plug in x=5x = 5 to find f(5)f(5): f(5)=50252+45f(5) = -\frac{50}{2\cdot5^2} + 45.
  6. Final Result: Simplify the expression: f(5)=502×25+45f(5) = -\frac{50}{2\times 25} + 45, f(5)=5050+45f(5) = -\frac{50}{50} + 45, f(5)=1+45f(5) = -1 + 45.
  7. Final Result: Simplify the expression: f(5)=50225+45f(5) = -\frac{50}{2\cdot 25} + 45, f(5)=5050+45f(5) = -\frac{50}{50} + 45, f(5)=1+45f(5) = -1 + 45. Final calculation: f(5)=44f(5) = 44.

More problems from Operations with rational exponents