Integrate from 0 to 3: Now, we integrate f(x) from 0 to 3.∫03ln(5)⋅5xdxLet's pull out the constant ln(5).ln(5)⋅∫035xdx
Pull out constant ln(5): To integrate 5x, we use the formula ∫axdx=ln(a)ax+C.∫5xdx=ln(5)5x+C Now we apply the limits from 0 to 3.ln(5)×[ln(5)53−ln(5)50]
Apply integration formula: Simplify the expression.ln(5)×[ln(5)125−ln(5)1]This simplifies to 125−1=124.
More problems from Evaluate definite integrals using the power rule