Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f^(')(x)=(100)/(x^(3)) and 
f(5)=-14.

f(1)=

f(x)=100x3 f^{\prime}(x)=\frac{100}{x^{3}} and f(5)=14 f(5)=-14 .\newlinef(1)= f(1)=

Full solution

Q. f(x)=100x3 f^{\prime}(x)=\frac{100}{x^{3}} and f(5)=14 f(5)=-14 .\newlinef(1)= f(1)=
  1. Integrate f(x)f'(x) for f(x)f(x): To find f(1)f(1), we need to integrate f(x)f'(x) to get f(x)f(x). The integral of f(x)=100x3f'(x) = \frac{100}{x^3} is f(x)=50x2+Cf(x) = -\frac{50}{x^2} + C, where CC is the constant of integration.
  2. Find Constant C: We know f(5)=14f(5) = -14. Let's plug x=5x = 5 into f(x)f(x) to find CC.
    14=50(52)+C-14 = -\frac{50}{(5^2)} + C
    14=5025+C-14 = -\frac{50}{25} + C
    14=2+C-14 = -2 + C
    C=14+2C = -14 + 2
    C=12C = -12
  3. Calculate f(1)f(1): Now we have f(x)=50x212f(x) = -\frac{50}{x^2} - 12. Let's find f(1)f(1) by plugging in x=1x = 1.
    f(1)=50(12)12f(1) = -\frac{50}{(1^2)} - 12
    f(1)=5012f(1) = -50 - 12
    f(1)=62f(1) = -62

More problems from Operations with rational exponents