Rewrite using Pythagorean identity: Use the Pythagorean identity tan2(θ)=cos2(θ)sin2(θ) to rewrite the expression.1+tan2(θ)1−tan2(θ)=1+(cos2(θ)sin2(θ))1−(cos2(θ)sin2(θ))
Combine terms over common denominator: Combine the terms over a common denominator.= cos2(θ)+sin2(θ)cos2(θ)−sin2(θ)
Recognize denominator identity: Recognize that the denominator is another Pythagorean identity: cos2(θ)+sin2(θ)=1. = (cos2(θ)−sin2(θ))/1
Simplify the expression: Simplify the expression.=cos2(θ)−sin2(θ)
Express cos2(θ) in terms of sin2(θ): Use the Pythagorean identity sin2(θ)=1−cos2(θ) to express cos2(θ) in terms of sin2(θ).= (1−sin2(θ))−sin2(θ)
Combine like terms: Combine like terms.=1−2sin2(θ)
More problems from Evaluate definite integrals using the chain rule