Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express 
(1-tan^(2)theta)/(1+tan^(2)theta) in terms of 
sin theta.

Express 1tan2θ1+tan2θ\frac{1-\tan^{2}\theta}{1+\tan^{2}\theta} in terms of sinθ\sin \theta.

Full solution

Q. Express 1tan2θ1+tan2θ\frac{1-\tan^{2}\theta}{1+\tan^{2}\theta} in terms of sinθ\sin \theta.
  1. Rewrite using Pythagorean identity: Use the Pythagorean identity tan2(θ)=sin2(θ)cos2(θ)\tan^2(\theta) = \frac{\sin^2(\theta)}{\cos^2(\theta)} to rewrite the expression.\newline1tan2(θ)1+tan2(θ)=1(sin2(θ)cos2(θ))1+(sin2(θ)cos2(θ))\frac{1-\tan^2(\theta)}{1+\tan^2(\theta)} = \frac{1-\left(\frac{\sin^2(\theta)}{\cos^2(\theta)}\right)}{1+\left(\frac{\sin^2(\theta)}{\cos^2(\theta)}\right)}
  2. Combine terms over common denominator: Combine the terms over a common denominator.\newline= cos2(θ)sin2(θ)cos2(θ)+sin2(θ)\frac{\cos^2(\theta)-\sin^2(\theta)}{\cos^2(\theta)+\sin^2(\theta)}
  3. Recognize denominator identity: Recognize that the denominator is another Pythagorean identity: cos2(θ)+sin2(θ)=1\cos^2(\theta)+\sin^2(\theta) = 1.
    = (cos2(θ)sin2(θ))/1(\cos^2(\theta)-\sin^2(\theta))/1
  4. Simplify the expression: Simplify the expression.\newline=cos2(θ)sin2(θ)= \cos^2(\theta)-\sin^2(\theta)
  5. Express cos2(θ)\cos^2(\theta) in terms of sin2(θ)\sin^2(\theta): Use the Pythagorean identity sin2(θ)=1cos2(θ)\sin^2(\theta) = 1 - \cos^2(\theta) to express cos2(θ)\cos^2(\theta) in terms of sin2(θ)\sin^2(\theta).\newline= (1sin2(θ))sin2(θ)(1-\sin^2(\theta))-\sin^2(\theta)
  6. Combine like terms: Combine like terms.\newline=12sin2(θ)= 1 - 2\sin^2(\theta)

More problems from Evaluate definite integrals using the chain rule