Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of 
log x,log y, and 
log z.

log ((y^(3))/(root(3)(z^(5))x^(2)))
Answer:

Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogy3z53x2 \log \frac{y^{3}}{\sqrt[3]{z^{5}} x^{2}} \newlineAnswer:

Full solution

Q. Expand the logarithm fully using the properties of logs. Express the final answer in terms of logx,logy \log x, \log y , and logz \log z .\newlinelogy3z53x2 \log \frac{y^{3}}{\sqrt[3]{z^{5}} x^{2}} \newlineAnswer:
  1. Use Quotient Rule: Use the quotient rule for logarithms, which states that log(ab)=log(a)log(b)\log(\frac{a}{b}) = \log(a) - \log(b), to separate the numerator and the denominator.\newline\log\left(\frac{y^{\(3\)}}{\sqrt[\(3\)]{z^{\(5\)}}x^{\(2\)}}\right) = \log(y^{\(3\)}) - \log(\sqrt[\(3]{z^{55}}x^{22})
  2. Apply Power Rule: Apply the power rule for logarithms, which states that log(an)=nlog(a)\log(a^n) = n\log(a), to the term log(y3)\log(y^{3}).\newlinelog(y3)=3log(y)\log(y^{3}) = 3\log(y)
  3. Convert Denominator to Powers: The denominator contains a cube root and a square, which can be written as powers: z53=z53\sqrt[3]{z^{5}} = z^{\frac{5}{3}} and x2x^{2}. log(z53x2)=log(z53x2)\log(\sqrt[3]{z^{5}}x^{2}) = \log(z^{\frac{5}{3}}x^{2})
  4. Use Product Rule: Use the product rule for logarithms, which states that log(ab)=log(a)+log(b)\log(ab) = \log(a) + \log(b), to separate the terms in the denominator.\newlinelog(z53x2)=log(z53)+log(x2)\log(z^{\frac{5}{3}}x^{2}) = \log(z^{\frac{5}{3}}) + \log(x^{2})
  5. Apply Power Rule: Apply the power rule for logarithms to both terms in the denominator.\newlinelog(z53)=53log(z)\log(z^{\frac{5}{3}}) = \frac{5}{3}\log(z)\newlinelog(x2)=2log(x)\log(x^{2}) = 2\log(x)
  6. Combine Results: Combine the results using the properties of logarithms.\newlinelog(y3z53x2)=3log(y)(53log(z)+2log(x))\log\left(\frac{y^{3}}{\sqrt[3]{z^{5}}x^{2}}\right) = 3\log(y) - \left(\frac{5}{3}\log(z) + 2\log(x)\right)
  7. Distribute Negative Sign: Distribute the negative sign to both terms in the parentheses.\newline3log(y)(53)log(z)2log(x)3\log(y) - \left(\frac{5}{3}\right)\log(z) - 2\log(x)

More problems from Evaluate definite integrals using the power rule