Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the summation below.

sum_(t=1)^(4)(-t^(2)-3)
Answer:

Evaluate the summation below.\newlinet=14(t23) \sum_{t=1}^{4}\left(-t^{2}-3\right) \newlineAnswer:

Full solution

Q. Evaluate the summation below.\newlinet=14(t23) \sum_{t=1}^{4}\left(-t^{2}-3\right) \newlineAnswer:
  1. Write and Evaluate for t=1t=1: Write down the summation expression and evaluate it for t=1t=1. The expression is (t23)(-t^2 - 3). For t=1t=1, the expression becomes: 123=13=4-1^2 - 3 = -1 - 3 = -4.
  2. Evaluate for t=2t=2: Evaluate the expression for t=2t=2. For t=2t=2, the expression becomes: 223=43=7-2^2 - 3 = -4 - 3 = -7.
  3. Evaluate for t=3t=3: Evaluate the expression for t=3t=3. For t=3t=3, the expression becomes: 323=93=12-3^2 - 3 = -9 - 3 = -12.
  4. Evaluate for t=4t=4: Evaluate the expression for t=4t=4. For t=4t=4, the expression becomes: 423=163=19-4^2 - 3 = -16 - 3 = -19.
  5. Add and Sum: Add up the values obtained for t=1t=1, t=2t=2, t=3t=3, and t=4t=4.\newlineSum = (4)+(7)+(12)+(19)(-4) + (-7) + (-12) + (-19).
  6. Perform Addition: Perform the addition to find the total sum.\newlineSum = 471219=42-4 - 7 - 12 - 19 = -42.

More problems from Evaluate definite integrals using the chain rule