Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the summation below.

sum_(n=1)^(4)(2-4n^(2))
Answer:

Evaluate the summation below.\newlinen=14(24n2) \sum_{n=1}^{4}\left(2-4 n^{2}\right) \newlineAnswer:

Full solution

Q. Evaluate the summation below.\newlinen=14(24n2) \sum_{n=1}^{4}\left(2-4 n^{2}\right) \newlineAnswer:
  1. Plug in n=1n=1: First, we plug in n=1n=1 into the expression (24n2)(2-4n^2):(24(1)2)=24(1)=24=2(2-4(1)^2) = 2-4(1) = 2-4 = -2
  2. Plug in n=2n=2: Next, we plug in n=2n=2 into the expression (24n2)(2-4n^2):(24(2)2)=24(4)=216=14(2-4(2)^2) = 2-4(4) = 2-16 = -14
  3. Plug in n=3n=3: Then, we plug in n=3n=3 into the expression (24n2)(2-4n^2):(24(3)2)=24(9)=236=34(2-4(3)^2) = 2-4(9) = 2-36 = -34
  4. Plug in n=4n=4: Finally, we plug in n=4n=4 into the expression (24n2)(2-4n^2):(24(4)2)=24(16)=264=62(2-4(4)^2) = 2-4(16) = 2-64 = -62
  5. Sum the results: Now, we sum the results of the expression for each value of nn from 11 to 44:
    Sum=(2)+(14)+(34)+(62)\text{Sum} = (-2) + (-14) + (-34) + (-62)
    Sum=2143462\text{Sum} = -2 - 14 - 34 - 62
    Sum=112\text{Sum} = -112

More problems from Evaluate definite integrals using the chain rule