Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the summation below.

sum_(n=0)^(5)(-2n^(2)-n)
Answer:

Evaluate the summation below.\newlinen=05(2n2n) \sum_{n=0}^{5}\left(-2 n^{2}-n\right) \newlineAnswer:

Full solution

Q. Evaluate the summation below.\newlinen=05(2n2n) \sum_{n=0}^{5}\left(-2 n^{2}-n\right) \newlineAnswer:
  1. Calculate for n=0n=0: For n=0n=0: (2(0)20)=0(-2(0)^2 - 0) = 0
  2. Calculate for n=1n=1: For n=1n=1: (2(1)21)=21=3(-2(1)^2 - 1) = -2 - 1 = -3
  3. Calculate for n=2n=2: For n=2n=2: (2(2)22)=2(4)2=82=10(-2(2)^2 - 2) = -2(4) - 2 = -8 - 2 = -10
  4. Calculate for n=3n=3: For n=3n=3: (2(3)23)=2(9)3=183=21(-2(3)^2 - 3) = -2(9) - 3 = -18 - 3 = -21
  5. Calculate for n=4n=4: For n=4n=4: (2(4)24)=2(16)4=324=36(-2(4)^2 - 4) = -2(16) - 4 = -32 - 4 = -36
  6. Calculate for n=5n=5: For n=5n=5: (2(5)25)=2(25)5=505=55(-2(5)^2 - 5) = -2(25) - 5 = -50 - 5 = -55
  7. Sum of all values: Now, we sum all the values obtained for each nn:0+(3)+(10)+(21)+(36)+(55)=1250 + (-3) + (-10) + (-21) + (-36) + (-55) = -125

More problems from Evaluate definite integrals using the chain rule