Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

intx^(2)(4x-5)^(2)dx
Answer:

Evaluate the integral.\newlinex2(4x5)2 dx \int x^{2}(4 x-5)^{2} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newlinex2(4x5)2 dx \int x^{2}(4 x-5)^{2} \mathrm{~d} x \newlineAnswer:
  1. Expand and Multiply: Let's start by expanding the integrand (4x5)2(4x-5)^2 and then multiplying it by x2x^2.(4x5)2=(4x)22(4x)(5)+(5)2=16x240x+25(4x-5)^2 = (4x)^2 - 2\cdot(4x)\cdot(5) + (5)^2 = 16x^2 - 40x + 25Now, multiply this by x2x^2:x2(16x240x+25)=16x440x3+25x2x^2(16x^2 - 40x + 25) = 16x^4 - 40x^3 + 25x^2
  2. Integrate Terms Separately: Next, we integrate each term separately with respect to xx.
    16x4dx=165x5+C1\int 16x^4 \, dx = \frac{16}{5}x^5 + C_1
    (40x3)dx=404x4+C2=10x4+C2\int(-40x^3) \, dx = \frac{-40}{4}x^4 + C_2 = -10x^4 + C_2
    25x2dx=253x3+C3\int 25x^2 \, dx = \frac{25}{3}x^3 + C_3
  3. Combine Integrals and Constants: Now, we combine the integrals and the constants of integration.\newlinex2(4x5)2dx=165x510x4+253x3+C\int x^2(4x-5)^2 \, dx = \frac{16}{5}x^5 - 10x^4 + \frac{25}{3}x^3 + C\newlineWhere CC is the combined constant of integration (C1+C2+C3C_1 + C_2 + C_3).

More problems from Evaluate definite integrals using the chain rule