Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Evaluate the integral
∫
x
−
5
−
2
x
+
2
d
x
\int \frac{x-5}{-2 x+2} d x
∫
−
2
x
+
2
x
−
5
d
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
x
−
2
ln
∣
x
−
1
∣
+
C
\frac{1}{2} x-2 \ln |x-1|+C
2
1
x
−
2
ln
∣
x
−
1∣
+
C
\newline
(B)
1
2
x
+
2
ln
∣
x
−
1
∣
+
C
\frac{1}{2} x+2 \ln |x-1|+C
2
1
x
+
2
ln
∣
x
−
1∣
+
C
\newline
(C)
−
1
2
x
−
2
ln
∣
x
−
1
∣
+
C
-\frac{1}{2} x-2 \ln |x-1|+C
−
2
1
x
−
2
ln
∣
x
−
1∣
+
C
\newline
(D)
−
1
2
x
+
2
ln
∣
x
−
1
∣
+
C
-\frac{1}{2} x+2 \ln |x-1|+C
−
2
1
x
+
2
ln
∣
x
−
1∣
+
C
View step-by-step help
Home
Math Problems
Calculus
Evaluate definite integrals using the chain rule
Full solution
Q.
Evaluate the integral
∫
x
−
5
−
2
x
+
2
d
x
\int \frac{x-5}{-2 x+2} d x
∫
−
2
x
+
2
x
−
5
d
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
x
−
2
ln
∣
x
−
1
∣
+
C
\frac{1}{2} x-2 \ln |x-1|+C
2
1
x
−
2
ln
∣
x
−
1∣
+
C
\newline
(B)
1
2
x
+
2
ln
∣
x
−
1
∣
+
C
\frac{1}{2} x+2 \ln |x-1|+C
2
1
x
+
2
ln
∣
x
−
1∣
+
C
\newline
(C)
−
1
2
x
−
2
ln
∣
x
−
1
∣
+
C
-\frac{1}{2} x-2 \ln |x-1|+C
−
2
1
x
−
2
ln
∣
x
−
1∣
+
C
\newline
(D)
−
1
2
x
+
2
ln
∣
x
−
1
∣
+
C
-\frac{1}{2} x+2 \ln |x-1|+C
−
2
1
x
+
2
ln
∣
x
−
1∣
+
C
Rewrite Integral:
Rewrite the integral as the sum of two simpler integrals.
∫
(
x
−
5
−
2
x
+
2
)
d
x
=
∫
(
1
2
−
5
−
2
x
+
2
)
d
x
\int(\frac{x-5}{-2x+2})dx = \int(\frac{1}{2} - \frac{5}{-2x+2})dx
∫
(
−
2
x
+
2
x
−
5
)
d
x
=
∫
(
2
1
−
−
2
x
+
2
5
)
d
x
Split into Parts:
Split the integral into two parts.
∫
(
1
2
−
5
−
2
x
+
2
)
d
x
=
∫
(
1
2
)
d
x
−
∫
(
5
−
2
x
+
2
)
d
x
\int(\frac{1}{2} - \frac{5}{-2x+2})dx = \int(\frac{1}{2})dx - \int(\frac{5}{-2x+2})dx
∫
(
2
1
−
−
2
x
+
2
5
)
d
x
=
∫
(
2
1
)
d
x
−
∫
(
−
2
x
+
2
5
)
d
x
Integrate First Part:
Integrate the first part.
∫
1
2
d
x
=
1
2
x
\int \frac{1}{2}dx = \frac{1}{2}x
∫
2
1
d
x
=
2
1
x
Make Substitution:
Make a substitution for the second part, let
u
=
−
2
x
+
2
u = -2x + 2
u
=
−
2
x
+
2
.
d
u
=
−
2
d
x
du = -2dx
d
u
=
−
2
d
x
, so
d
x
=
−
1
2
d
u
dx = -\frac{1}{2} du
d
x
=
−
2
1
d
u
Change Limits:
Change the limits of integration according to the substitution.
\newline
∫
5
(
−
2
x
+
2
)
d
x
=
−
5
2
∫
1
u
d
u
\int\frac{5}{(-2x+2)}\,dx = -\frac{5}{2} \int\frac{1}{u}\,du
∫
(
−
2
x
+
2
)
5
d
x
=
−
2
5
∫
u
1
d
u
Integrate Second Part:
Integrate the second part using the substitution.
\newline
-\frac{\(5\)}{\(2\)} \int(\frac{\(1\)}{u})du = -\frac{\(5\)}{\(2\)} \ln|u| + C
Substitute Back:
Substitute back for \(u.
−
5
2
ln
∣
u
∣
+
C
=
−
5
2
ln
∣
−
2
x
+
2
∣
+
C
-\frac{5}{2} \ln|u| + C = -\frac{5}{2} \ln|-2x+2| + C
−
2
5
ln
∣
u
∣
+
C
=
−
2
5
ln
∣
−
2
x
+
2∣
+
C
Combine Integrals:
Combine the two parts of the integral.
(
1
2
)
x
−
5
2
ln
∣
−
2
x
+
2
∣
+
C
(\frac{1}{2})x - \frac{5}{2} \ln|{-2x+2}| + C
(
2
1
)
x
−
2
5
ln
∣
−
2
x
+
2
∣
+
C
Simplify Expression:
Simplify the expression.
\newline
(\frac{\(1\)}{\(2\)})x - \frac{\(5\)}{\(2\)} \ln|{\(-2\)x+\(2\)}| + C = (\frac{\(1\)}{\(2\)})x + (\frac{\(5\)}{\(2\)})\ln|x\(-1| + C
More problems from Evaluate definite integrals using the chain rule
Question
The number of subscribers to a magazine is changing at a rate of
r
(
t
)
r(t)
r
(
t
)
subscribers per month (where
t
t
t
is time in months).
\newline
What does
∫
8
10
r
′
(
t
)
d
t
=
7
\int_{8}^{10} r^{\prime}(t) d t=7
∫
8
10
r
′
(
t
)
d
t
=
7
mean?
\newline
Choose
1
1
1
answer:
\newline
(A) The rate of change of number of subscribers increased by
7
7
7
subscribers per month between
t
=
8
t=8
t
=
8
and
t
=
10
t=10
t
=
10
months.
\newline
(B) As of month
10
10
10
, the magazine had
7
7
7
subscribers.
\newline
(C) The number of subscribers increased by
7
7
7
between
t
=
8
t=8
t
=
8
and
t
=
10
t=10
t
=
10
months.
\newline
(D) The average rate of change in subscribers between month
8
8
8
and month
10
10
10
was
7
7
7
subscribers per month.
Get tutor help
Posted 9 months ago
Question
Consider the following problem:
\newline
The water level under a bridge is changing at a rate of
r
(
t
)
=
40
sin
(
π
t
6
)
r(t)=40 \sin \left(\frac{\pi t}{6}\right)
r
(
t
)
=
40
sin
(
6
π
t
)
centimeters per hour (where
t
t
t
is the time in hours). At time
t
=
3
t=3
t
=
3
, the water level is
91
91
91
centimeters. By how much does the water level change during the
4
th
4^{\text {th }}
4
th
hour?
\newline
Which expression can we use to solve the problem?
\newline
Choose
1
1
1
answer:
\newline
(A)
∫
0
4
r
(
t
)
d
t
\int_{0}^{4} r(t) d t
∫
0
4
r
(
t
)
d
t
\newline
(B)
∫
4
5
r
(
t
)
d
t
\int_{4}^{5} r(t) d t
∫
4
5
r
(
t
)
d
t
\newline
(C)
∫
3
4
r
(
t
)
d
t
\int_{3}^{4} r(t) d t
∫
3
4
r
(
t
)
d
t
\newline
(D)
∫
4
4
r
(
t
)
d
t
\int_{4}^{4} r(t) d t
∫
4
4
r
(
t
)
d
t
Get tutor help
Posted 9 months ago
Question
The base of a solid is the region enclosed by the graphs of
y
=
sin
(
x
)
y=\sin (x)
y
=
sin
(
x
)
and
y
=
4
−
x
y=4-\sqrt{x}
y
=
4
−
x
, between
x
=
2
x=2
x
=
2
and
x
=
7
x=7
x
=
7
.
\newline
Cross sections of the solid perpendicular to the
x
x
x
-axis are rectangles whose height is
2
x
2 x
2
x
.
\newline
Which one of the definite integrals gives the volume of the solid?
\newline
Choose
1
1
1
answer:
\newline
(A)
∫
2
7
[
sin
(
x
)
+
x
−
4
]
⋅
2
x
d
x
\int_{2}^{7}[\sin (x)+\sqrt{x}-4] \cdot 2 x d x
∫
2
7
[
sin
(
x
)
+
x
−
4
]
⋅
2
x
d
x
\newline
(B)
∫
2
7
[
sin
2
(
x
)
−
(
4
−
x
)
2
]
d
x
\int_{2}^{7}\left[\sin ^{2}(x)-(4-\sqrt{x})^{2}\right] d x
∫
2
7
[
sin
2
(
x
)
−
(
4
−
x
)
2
]
d
x
\newline
(C)
∫
2
7
[
4
−
x
−
sin
(
x
)
]
⋅
2
x
d
x
\int_{2}^{7}[4-\sqrt{x}-\sin (x)] \cdot 2 x d x
∫
2
7
[
4
−
x
−
sin
(
x
)]
⋅
2
x
d
x
\newline
(D)
∫
2
7
[
(
4
−
x
)
2
−
sin
2
(
x
)
]
d
x
\int_{2}^{7}\left[(4-\sqrt{x})^{2}-\sin ^{2}(x)\right] d x
∫
2
7
[
(
4
−
x
)
2
−
sin
2
(
x
)
]
d
x
Get tutor help
Posted 9 months ago
Question
(
1
×
(
(
1
2
)
n
−
1
)
)
/
(
(
1
2
)
−
1
)
\left(1\times\left(\left(\frac{1}{2}\right)^n-1\right)\right)\bigg/\left(\left(\frac{1}{2}\right)-1\right)
(
1
×
(
(
2
1
)
n
−
1
)
)
/
(
(
2
1
)
−
1
)
Get tutor help
Posted 8 months ago
Question
Solve
∫
1
(
x
−
2
)
(
x
2
+
x
+
1
)
d
x
\int \frac{1}{(x-2)(x^{2}+x+1)}\,dx
∫
(
x
−
2
)
(
x
2
+
x
+
1
)
1
d
x
.
Get tutor help
Posted 8 months ago
Question
What is the integral of the function
f
(
x
)
=
sin
(
2
x
)
f(x) = \sin(2x)
f
(
x
)
=
sin
(
2
x
)
?
\newline
−
1
2
cos
(
x
)
+
C
\frac{-1}{2}\cos(x) + C
2
−
1
cos
(
x
)
+
C
\newline
1
2
sin
(
x
)
+
C
\frac{1}{2}\sin(x) + C
2
1
sin
(
x
)
+
C
\newline
−
1
2
cos
(
2
x
)
+
C
\frac{-1}{2}\cos(2x) + C
2
−
1
cos
(
2
x
)
+
C
\newline
1
2
sin
(
2
x
)
+
C
\frac{1}{2}\sin(2x) + C
2
1
sin
(
2
x
)
+
C
Get tutor help
Posted 8 months ago
Question
What is the integral of the function
f
(
x
)
=
s
i
n
(
2
x
)
\ f(x) = sin(2x)
f
(
x
)
=
s
in
(
2
x
)
?
\newline
−
1
2
cos
(
x
)
+
C
\frac{-1}{2}\cos(x) + C
2
−
1
cos
(
x
)
+
C
\newline
1
2
sin
(
x
)
+
C
\frac{1}{2} \sin(x) + C
2
1
sin
(
x
)
+
C
\newline
−
1
2
cos
(
2
x
)
+
C
\frac{-1}{2}\cos(2x) + C
2
−
1
cos
(
2
x
)
+
C
\newline
1
2
sin
(
2
x
)
+
c
\frac{1}{2} \sin(2x) + c
2
1
sin
(
2
x
)
+
c
Get tutor help
Posted 8 months ago
Question
Suppose
∫
2
4
f
(
2
x
)
d
x
=
10
\int_{2}^{4} f(2x) \, dx = 10
∫
2
4
f
(
2
x
)
d
x
=
10
. Then
∫
4
8
f
(
u
)
d
u
=
\int_{4}^{8} f(u) \, du =
∫
4
8
f
(
u
)
d
u
=
Get tutor help
Posted 8 months ago
Question
Find
d
d
t
∫
2
t
4
e
x
2
d
x
\frac{d}{dt}\int_{2}^{t^{4}}e^{x^{2}}dx
d
t
d
∫
2
t
4
e
x
2
d
x
Get tutor help
Posted 8 months ago
Question
Evaluate and write the answer in scientific notation:
\newline
(
1.48
×
1
0
3
)
(
7
×
1
0
4
)
÷
8.2
×
1
0
12
(1.48\times10^{3})(7\times10^{4})\div8.2\times10^{12}
(
1.48
×
1
0
3
)
(
7
×
1
0
4
)
÷
8.2
×
1
0
12
Get tutor help
Posted 8 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant