Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral 
int(x-5)/(-2x+2)dx.
Choose 1 answer:
(A) 
(1)/(2)x-2ln |x-1|+C
(B) 
(1)/(2)x+2ln |x-1|+C
(C) 
-(1)/(2)x-2ln |x-1|+C
(D) 
-(1)/(2)x+2ln |x-1|+C

Evaluate the integral x52x+2dx \int \frac{x-5}{-2 x+2} d x .\newlineChoose 11 answer:\newline(A) 12x2lnx1+C \frac{1}{2} x-2 \ln |x-1|+C \newline(B) 12x+2lnx1+C \frac{1}{2} x+2 \ln |x-1|+C \newline(C) 12x2lnx1+C -\frac{1}{2} x-2 \ln |x-1|+C \newline(D) 12x+2lnx1+C -\frac{1}{2} x+2 \ln |x-1|+C

Full solution

Q. Evaluate the integral x52x+2dx \int \frac{x-5}{-2 x+2} d x .\newlineChoose 11 answer:\newline(A) 12x2lnx1+C \frac{1}{2} x-2 \ln |x-1|+C \newline(B) 12x+2lnx1+C \frac{1}{2} x+2 \ln |x-1|+C \newline(C) 12x2lnx1+C -\frac{1}{2} x-2 \ln |x-1|+C \newline(D) 12x+2lnx1+C -\frac{1}{2} x+2 \ln |x-1|+C
  1. Rewrite Integral: Rewrite the integral as the sum of two simpler integrals. (x52x+2)dx=(1252x+2)dx\int(\frac{x-5}{-2x+2})dx = \int(\frac{1}{2} - \frac{5}{-2x+2})dx
  2. Split into Parts: Split the integral into two parts. (1252x+2)dx=(12)dx(52x+2)dx\int(\frac{1}{2} - \frac{5}{-2x+2})dx = \int(\frac{1}{2})dx - \int(\frac{5}{-2x+2})dx
  3. Integrate First Part: Integrate the first part. 12dx=12x\int \frac{1}{2}dx = \frac{1}{2}x
  4. Make Substitution: Make a substitution for the second part, let u=2x+2u = -2x + 2. du=2dxdu = -2dx, so dx=12dudx = -\frac{1}{2} du
  5. Change Limits: Change the limits of integration according to the substitution.\newline5(2x+2)dx=521udu\int\frac{5}{(-2x+2)}\,dx = -\frac{5}{2} \int\frac{1}{u}\,du
  6. Integrate Second Part: Integrate the second part using the substitution.\newline-\frac{\(5\)}{\(2\)} \int(\frac{\(1\)}{u})du = -\frac{\(5\)}{\(2\)} \ln|u| + C
  7. Substitute Back: Substitute back for \(u.52lnu+C=52ln2x+2+C-\frac{5}{2} \ln|u| + C = -\frac{5}{2} \ln|-2x+2| + C
  8. Combine Integrals: Combine the two parts of the integral. (12)x52ln2x+2+C(\frac{1}{2})x - \frac{5}{2} \ln|{-2x+2}| + C
  9. Simplify Expression: Simplify the expression. \newline(\frac{\(1\)}{\(2\)})x - \frac{\(5\)}{\(2\)} \ln|{\(-2\)x+\(2\)}| + C = (\frac{\(1\)}{\(2\)})x + (\frac{\(5\)}{\(2\)})\ln|x\(-1| + C

More problems from Evaluate definite integrals using the chain rule