Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral 
int(x+4)/(2x+6)dx.
Choose 1 answer:
(A) 
2x-(ln |2x+6|)/(2)+C
(B) 
(1)/(2)x-(ln |2x+6|)/(2)+C
(C) 
2x+ln |2x+6|+C
(D) 
(1)/(2)x+(ln |2x+6|)/(2)+C

Evaluate the integral x+42x+6dx \int \frac{x+4}{2 x+6} d x .\newlineChoose 11 answer:\newline(A) 2xln2x+62+C 2 x-\frac{\ln |2 x+6|}{2}+C \newline(B) 12xln2x+62+C \frac{1}{2} x-\frac{\ln |2 x+6|}{2}+C \newline(C) 2x+ln2x+6+C 2 x+\ln |2 x+6|+C \newline(D) 12x+ln2x+62+C \frac{1}{2} x+\frac{\ln |2 x+6|}{2}+C

Full solution

Q. Evaluate the integral x+42x+6dx \int \frac{x+4}{2 x+6} d x .\newlineChoose 11 answer:\newline(A) 2xln2x+62+C 2 x-\frac{\ln |2 x+6|}{2}+C \newline(B) 12xln2x+62+C \frac{1}{2} x-\frac{\ln |2 x+6|}{2}+C \newline(C) 2x+ln2x+6+C 2 x+\ln |2 x+6|+C \newline(D) 12x+ln2x+62+C \frac{1}{2} x+\frac{\ln |2 x+6|}{2}+C
  1. Partial Fraction Decomposition: Let's do a partial fraction decomposition first. We can write (x+4)/(2x+6)(x+4)/(2x+6) as A/(2x+6)+BA/(2x+6) + B, where AA and BB are constants we need to find.
  2. Finding Constants AA and BB: To find AA and BB, we set x+4=A(1)+B(2x+6)x+4 = A(1) + B(2x+6). Let's choose x=3x = -3 to make the BB term disappear and solve for AA.
  3. Solving for AA: Plugging x=3x = -3 into the equation, we get 3+4=A(1)+B(0)-3+4 = A(1) + B(0), which simplifies to A=1A = 1.
  4. Finding B: Now let's find BB. We can choose x=0x = 0 to make the AA term disappear. Plugging x=0x = 0 into the equation, we get 0+4=A(0)+B(2×0+6)0+4 = A(0) + B(2\times0+6), which simplifies to B=23B = \frac{2}{3}.
  5. Final Integration: We now have the partial fraction decomposition: (x+4)/(2x+6)=1/(2x+6)+(2/3)(x+4)/(2x+6) = 1/(2x+6) + (2/3). Let's integrate both terms separately.
  6. Integral of 12x+6\frac{1}{2x+6}: The integral of 12x+6\frac{1}{2x+6} is (12)ln2x+6(\frac{1}{2})\ln|2x+6|, because the derivative of 2x+62x+6 is 22, and we need to multiply by 12\frac{1}{2} to compensate for the extra 22.
  7. Integral of 23\frac{2}{3}: The integral of 23\frac{2}{3} is (23)x(\frac{2}{3})x, because the integral of a constant is just the constant times xx.
  8. Combining Integrals: Adding both integrals together, we get (12)ln2x+6+(23)x+C(\frac{1}{2})\ln|2x+6| + (\frac{2}{3})x + C.

More problems from Evaluate definite integrals using the chain rule