Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int x(3x+4)^(2)dx
Answer:

Evaluate the integral.\newlinex(3x+4)2 dx \int x(3 x+4)^{2} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newlinex(3x+4)2 dx \int x(3 x+4)^{2} \mathrm{~d} x \newlineAnswer:
  1. Substitution Method: Let's use substitution to solve the integral. We will let u=3x+4u = 3x + 4, then du=3dxdu = 3dx. We need to express xx in terms of uu and dxdx in terms of dudu.
  2. Express xx in terms of uu: First, we solve for xx in terms of uu: u=3x+4u = 3x + 4 implies x=(u4)/3x = (u - 4)/3.
  3. Express dxdx in terms of dudu: Next, we express dxdx in terms of dudu: since du=3dxdu = 3dx, we have dx=du3dx = \frac{du}{3}.
  4. Substitute xx and dxdx: Now we substitute xx and dxdx in the integral: x(3x+4)2dx\int x(3x + 4)^2 dx becomes (u43)(u2)(du3)\int \left(\frac{u - 4}{3}\right)(u^2)\left(\frac{du}{3}\right).
  5. Simplify the integral: Simplify the integral: \int \left(\frac{u - \(4\)}{\(3\)}\right)u^\(2\left(\frac{du}{33}\right) = \frac{11}{99}\int u^22(u - 44) du = \frac{11}{99}\int (u^33 - 44u^22) du.
  6. Find the antiderivative: Find the antiderivative: (1/9)(u34u2)du=(1/9)((u4)/4(4u3)/3)+C(1/9)\int (u^3 - 4u^2) du = (1/9)((u^4)/4 - (4u^3)/3) + C.
  7. Simplify the antiderivative: Simplify the antiderivative: (\frac{\(1\)}{\(9\)})\left(\frac{u^\(4\)}{\(4\)} - \frac{\(4\)u^\(3\)}{\(3\)}\right) + C = \left(\frac{\(1\)}{\(36\)}\right)u^\(4 - \left(\frac{44}{2727}\right)u^33 + C.
  8. Substitute back for u: Substitute back for u: (136)(3x+4)4(427)(3x+4)3+C(\frac{1}{36})(3x + 4)^4 - (\frac{4}{27})(3x + 4)^3 + C.

More problems from Evaluate definite integrals using the chain rule